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Theorem (Berger, '66)
The Wang tiling problem is undecidable.
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Cayley graphs

I' =< .S >: finitely generated group. Assume S = S~
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Cayley graphs

I =< § >: finitely generated group. Assume § = S~!.Cay(T", S) is the
labelled graph with vertex set I' and adjacencies xy for every x,y € I" such
that ye x- S.

a a a a a
Cay(Z2, ), bl b b b b] b
with §' = {(1,0),(=1,0),(0, 1), (0, - 1)} bl | b| | b| ob
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Domino Problem on groups

Fix (T, .S).
Pattern of Cay(I', S): coloring p of {1, s} for some s € S.
p appears in a vertex-coloring of Cay(T’, S) if there is a pair (w, w - s)

colored p.
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Domino Problem on groups

Fix (T, .S).

Pattern of Cay(IT,.S): coloring p of {1, s} for some s € S.

p appears in a vertex-coloring of Cay(T',.S) if there is a pair (w, w - s)
colored p.

Domino problem on (T, S):

Input: a finite alphabet X and a finite set ¥ = {p;, ..., p,} of forbidden
patterns.

Question: Is there a coloring ¢ : V(G) - X avoiding F?
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Domino Problem on groups

Fix (T, .5).

Pattern of Cay(I,.S): coloring p of {1, s} for some s € S.

p appears in a vertex-coloring of Cay(T’, S) if there is a pair (w, w - s)
colored p.

Colors:
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Domino Problem on groups

Fix (I', S).

Pattern of Cay(I', S): coloring p of {1, s} for some s € S.

p appears in a vertex-coloring of Cay(T’, S) if there is a pair (w, w - s)
colored p.

Colors:
KNENEK * ¢ ¢ ¢ 9 9
KXERMBEKEK P P 2P| P P o

Forbidden patterns: b b b b b b

a a a a a
K K K M | G SN GEENE. GEENE SN {
—e ——o b ab ab ab ab ab
Ip @ Ip @ o o o e 0 ¢
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Virtually-free groups

Free-groups ~ groups I" that admit a tree as a Cayley graph.
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Virtually-free groups

Free-groups ~ groups I' that admit a tree as a Cayley graph.
I' is virtually-free if it admits some subgroup of finite index which is free.

Theorem (Karass, Pietrowski, Solitar '73)

[ is virtually-free if and only if one/all its Cayley graphs have bounded
treewidth.

Claim: If G has bounded degree, then G has bounded treewidth if and only
if G is a subgraph of a k-blow up of a tree for some k > 0.
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Virtually-free groups

Free-groups ~ groups I' that admit a tree as a Cayley graph.
I is virtually-free if it admits some subgroup of finite index which is free.

Theorem (Karass, Pietrowski, Solitar '73)

[ is virtually-free if and only if one/all its Cayley graphs have bounded
treewidth.

Claim: If G has bounded degree, then G has bounded treewidth if and only
if G is a subgraph of a k-blow up of a tree for some k > 0.

Conjecture (Ballier-Stein 2018)
The domino problem on T is decidable if and only if T is virtually-free.
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Planar groups

A group is planar if one of its Cayley graphs is planar.
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Planar groups

A group is planar if one of its Cayley graphs is planar.
[Maschke 1896] Exhaustive list of all the planar finite groups.
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Planar groups

A group is planar if one of its Cayley graphs is planar.
[Maschke 1896] Exhaustive list of all the planar finite groups.
[Maskit 1965, Zieschang et al. 1980] Full characterization of
accumulation-free planar groups.
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Domino Problem

Decidable on virtually-free groups;
[Berger 1966] Undecidable on Z?;

[Aubrun Barbieri Moutot 2019] Undecidable on fundamental groups of
surfaces.
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Domino Problem

Decidable on virtually-free groups;
[Berger 1966] Undecidable on Z?;

[Aubrun Barbieri Moutot 2019] Undecidable on fundamental groups of
surfaces.

The conjecture is true for planar groups.
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Ends

G: infinite graph.
Ray: l-ended infinite path r = (x|, x,, x3,...) in a graph G.
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r ~ 1’ if for every finite X C;, V(G), the infinite components of r and r/
are in the same connected component of G \ X.
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G: infinite graph.

Ray: 1-ended infinite path r = (x|, x,, X3, ...) in a graph G.

r ~ r" if for every finite X C;, V(G), the infinite components of r and r/
are in the same connected component of G \ X.

ends of G: equivalence classes of rays.
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Ends

G- infinite graph.

Ray: 1-ended infinite path r = (x|, x,, X3, ...) in a graph G.

r ~ 1’ if for every finite X Crin V(G), the infinite components of r and r/
are in the same connected component of G \ X.

ends of G: equivalence classes of rays.
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Ends

G: infinite graph.

Ray: 1-ended infinite path r = (x;, x,, X3, ...) in a graph G.

r ~ ' if for every finite X C;, V(G), the infinite components of r and r/
are in the same connected component of G \ X.

ends of G: equivalence classes of rays.

How many ends in the following graphs?

Theorem (Freudenthal, '44)

A Cayley graph has either 0, 1, 2 or infinitely many ends.
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One-ended planar groups

Theorem (Bundgaard-Nielsen '42, Fox '52)

If a group T is planar with one end, then it contains the fundamental group
of a surface as a subgroup of finite index.
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Accessibility

Ends w, @’ are k-distinguishable if there is a set X C T of size at most k
separating their rays.
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Accessibility

Ends w, @’ are k-distinguishable if there is a set X C T" of size at most k
separating their rays.

G is accessible if there is some k > 0 such that all its ends are
k-distinguishable.

Accessible?

Theorem (Dunwoody 2007)

Planar groups are accessible.
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Accessibility

Ends w, @’ are k-distinguishable if there is a set X C T of size at most k
separating their rays.

G is accessible if there is some k > 0 such that all its ends are
k-distinguishable.

Accessible?

Theorem (Dunwoody 2007)

Planar groups are accessible.

Theorem (Bass-Serre theory)

If T is accessible, then
e either T is virtually free
e or I contains a finitely generated subgroup with one end.
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Minors

A graph H is a minor of G if H can be obtained from G after performing
the following operations:

@ vertex deletions;
o edge deletions;

@ edge contractions.
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Minors

A graph H is a minor of G if H can be obtained from G after performing

the following operations:
@ vertex deletions;
o edge deletions;

@ edge contractions.
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Minor-excluded groups

A group is planar if one of its Cayley graphs is planar.
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A group is planar if one of its Cayley graphs is planar.

A group is minor excluded if one of its Cayley graphs excludes a
(countable) minor.

Remark: G minor-excluded & G is K -minor free.
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Minor-excluded groups

A group is planar if one of its Cayley graphs is planar.

A group is minor excluded if one of its Cayley graphs excludes a
(countable) minor.

Remark: G minor-excluded & G is K -minor free.

The Domino conjecture is true for planar groups and more generally for
minor-excluding groups.
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Quasi-transitive graphs

G: (connected) graph, countable vertex set, locally finite.
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Quasi-transitive graphs

G: (connected) graph, countable vertex set, locally finite.
G transitive (resp. quasi-transitive) if the action of Aut(G) on V(G) has
one (resp. a finite number of) orbit.
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G: (connected) graph, countable vertex set, locally finite.
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Quasi-transitive graphs

G: (connected) graph, countable vertex set, locally finite.
G transitive (resp. quasi-transitive) if the action of Aut(G) on V(G) has
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Canonical tree-decompositions
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Canonical tree-decompositions
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Canonical tree-decompositions
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Main result

Theorem (finite/planar)

Let G be a quasi-transitive locally finite graph excluding K, as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T, V), of adhesion at most k whose torsos are either
finite or quasi-transitive 3-connected planar minors of G.
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Main result

Theorem (finite/planar)

Let G be a quasi-transitive locally finite graph excluding K., as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T, V), of adhesion at most k whose torsos are either
finite or quasi-transitive 3-connected planar minors of G. Moreover, E(T)
has finitely many Aut(G)-orbits.
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Main result

Theorem (finite treewidth/planar)

Let G be a quasi-transitive locally finite graph excluding K, as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T, V), of adhesion at most 3 whose torsos are
quasi-transitive minors of G and have either treewidth at most k or are
3-connected planar.
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Main result

Theorem (finite treewidth/planar)

Let G be a quasi-transitive locally finite graph excluding K, as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T, V), of adhesion at most 3 whose torsos are
quasi-transitive minors of G and have either treewidth at most k or are
3-connected planar. Moreover, E(T) has finitely many Aut(G)-orbits.
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A graph application

For every locally finite quasi-transitive graph G avoiding K, as a minor,
there is an integer k such that G is K,-minor-free.

Generalizes [Thomassen '92] dealing with the 4-connected case.
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Conclusion

@ Prove results on groups by working in the more general world of
quasi-transitive graphs.

@ Key tool: canonicity (allows to do induction in the context of
tree-decompositions).
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Conclusion

@ Prove results on groups by working in the more general world of
quasi-transitive graphs.
@ Key tool: canonicity (allows to do induction in the context of
tree-decompositions).
Questions:
@ A quasi-transitive graphical reformulation of Domino’s conjecture?

e If G is quasi-transitive, is there a proper colouring of G with a finite
number of colours such that the colored graph G is quasi-transitive?
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Conclusion

@ Prove results on groups by working in the more general world of
quasi-transitive graphs.

@ Key tool: canonicity (allows to do induction in the context of
tree-decompositions).

Questions:

@ A quasi-transitive graphical reformulation of Domino’s conjecture?

e If G is quasi-transitive, is there a proper colouring of G with a finite
number of colours such that the colored graph G is quasi-transitive?

Thanks
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Proof idea

G is k + 1-connected if |V| = k+ 1 and for every set X of at most k
vertices, G \ X is connected.

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order
3 separate exactly 2 components, and one of them have size 1.



Proof idea

G is k + 1-connected if |V| > k + 1 and for every set X of at most k
vertices, G \ X is connected.

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order
3 separate exactly 2 components, and one of them have size 1.
4-connected = quasi-4-connected = 3-connected = 2-connected
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Proof idea

G is k + 1-connected if |V| > k + 1 and for every set X of at most k
vertices, G \ X is connected.

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order
3 separate exactly 2 components, and one of them have size 1.

Try to combine the following two results:

Theorem (Thomassen '92)

Let G be a quasi-transitive, quasi-4-connected, locally finite graph which
excludes K, as a minor. Then G is planar or has finite treewidth.
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Proof idea

G is k + 1-connected if |V| = k+ 1 and for every set X of at most k
vertices, G \ X is connected.

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order
3 separate exactly 2 components, and one of them have size 1.

Try to combine the following two results:

Theorem (Thomassen '92)

Let G be a quasi-transitive, quasi-4-connected, locally finite graph which
excludes K, as a minor. Then G is planar or has finite treewidth.

In this case there is nothing to decompose!
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Grohe's decomposition

Theorem (Grohe '16)

Every finite 3-connected graph G has a tree-decomposition of adhesion at
most 3 whose torsos are minor of G and are complete graphs on at most 4
vertices or quasi-4-connected graphs.
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Grohe's decomposition

Theorem (Grohe '16)

Every finite 3-connected graph G has a tree-decomposition of adhesion at
most 3 whose torsos are minor of G and are complete graphs on at most 4
vertices or quasi-4-connected graphs.

Bad news: only applies to finite graphs and no canonicity.



|
Application: Finite presentability.

Theorem (Droms '06)

Planar groups are finitely presented.




Application: Finite presentability.

Theorem (Droms '06)

Planar groups are finitely presented.

Every minor-excluding finitely generated group T is finitely presented.

Proof based on the approach of [Hamann '18]
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Application: accessibility

Accessibility: first defined in the context of groups.

A ray in a graph G is an infinite path r = (x, x,, X3, ...).

r ~ r’ iff for every finite S C V(G), there is an inifinite component of G
containing an infinite subpath of both r and r’.

An end w is a class of equivalence of rays in a graph.

w and @’ are k-distinguishable if there exist S C V(G) of size at most k
separating all their rays.
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Application: accessibility

Accessibility: first defined in the context of groups.

A ray in a graph G is an infinite path r = (x, x,, X3, ...).

r ~ r’ iff for every finite S C V(G), there is an inifinite component of G

containing an infinite subpath of both r and r’.

An end w is a class of equivalence of rays in a graph.

w and @’ are k-distinguishable if there exist S C V(G) of size at most k
separating all their rays.

G is accessible if there exists k € N such that every two distinct ends are
k-distinguishable.
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Application: accessibility

[Woess '87] Locally finite quasi-transitive bounded treewidth graphs
are accessible.

[Dunwoody '07] Locally finite quasi-transitive planar graphs are
accessible.

Locally finite quasi-transitive graphs that exclude K, as a minor are
accessible.




