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Overview

[BKTW 20] Twin-width I: tractable FO model checking
[BGKTW 20] Twin-width II: small classes

[BGKTW 20] Twin-width Ill: max independent set, min dominating
set, and coloring

[BGOSTT 21] Twin-width 1V: ordered graphs and matrices

[BGOT 22] Twin-width V: linear minors, modular counting, and matrix
multiplication

[BKRT 21] Twin-width VI: the lens of contraction sequences

[BGTT 22] Twin-width VII: groups

[BCKKLT 22] Twin-width VIII: delineation and win-wins
http://perso.ens-1lyon.fr/edouard.bonnet/twinwidth.html
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Twin-width of unordered graphs

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs
(G=G,,G,_,,...,G)) where G,_; is obtained by identifying two vertices of
G,.

1
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Twin-width of unordered graphs

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs
(G=G,,G,_,,...,G)) where G,_; is obtained by identifying two vertices of
G,

V(G,;) < partition of V(G).
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Twin-width of unordered graphs

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs
(G=G,,G,_,...,G;) where G,_, is obtained by identifying two vertices of

G..
VI(G,-) < partition of V(G).
For every X,Y € V(G,) put:
@ An edge XY € E(G),) if G[X,Y] is a biclique;
@ A nonedge in G; if G[X,Y] has no edge;
@ A red edge XY € R(G;) otherwise.
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Twin-width of unordered graphs

A contraction sequence of G:
Sequence of trigraphs G = G,,G,_y, ..., G5, G| such that
G, is obtained by performing one contraction in G, ;.

. Ured Fabriary 2023

4/1



Twin-width of unordered graphs

A contraction sequence of G:
Sequence of trigraphs G = G,,G,_y, ..., G,, G, such that
G, is obtained by performing one contraction in G, ;.

. Ured Fabriary 2023

4/1



Twin-width of unordered graphs
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A contraction sequence of G:
Sequence of trigraphs G = G,,G,_y, ..., G,, G, such that
G, is obtained by performing one contraction in G, ;.
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A contraction sequence of G:
Sequence of trigraphs G = G,,G,_,, ..., G5, G| such that
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Twin-width of unordered graphs

adg

A contraction sequence of G:
Sequence of trigraphs G = G,,G,_,, ..., G5, G| such that
G, is obtained by performing one contraction in G, ;.
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Twin-width of unordered graphs

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = G,,G,_,, ..., G,, G such that
G, is obtained by performing one contraction in G, ;.
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Twin-width of unordered graphs

Definition (Contraction sequence,twin-width)

Contraction sequence of G = (V, E): sequence of trigraphs
(G=G,,G,_,...,G)) where G,_; is obtained by identifying two vertices of
G,.
V(G,;) < partition of V(G).
For every X,Y € V(G,) put:

o An edge if G[X,Y] is a biclique;

@ A nonedge if G[X,Y] has no edge;

o A red edge otherwise.
(G,); has width at most d if every G; has red degree at most d.
The twin-width of G is the minimum width a contraction sequence of G
could have.
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-]
Warnings

@ “Vertex-contraction” means ‘“vertex-identification”.
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-]
Warnings

@ “Vertex-contraction” means ‘“vertex-identification”.

@ Twin-width is not decreasing when taking subgraphs. However it
changes when considering induced subgraphs: for every H <;,; G,
tww(H) < tww(G).
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Examples and properties

@ Cographs  Graphs with twin-width 0;
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Algorithmic aspect of twin-width

Theorem (Bergé, Bonnet, Déprés 22)

Deciding whether a given graph has twin-width at most 4 is NP-Complete.
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Algorithmic aspect of twin-width

Theorem (Bergé, Bonnet, Déprés 22)

Deciding whether a given graph has twin-width at most 4 is NP-Complete.

Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking d,G as
input and returning in time f(d) - n®Y either a “No” answer if G has
twin-width more than d, or an f(d)-sequence otherwise?
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Algorithmic aspect of twin-width

Theorem (Bergé, Bonnet, Déprés 22)

Deciding whether a given graph has twin-width at most 4 is NP-Complete.

Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking d,G as
input and returning in time f(d) - n®Y either a “No” answer if G has
twin-width more than d, or an f(d)-sequence otherwise?

Positive answer for every known “interesting family” of bounded twin-width.
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FO model checking on graphs

@ € FO(E@): first order formula describing a graph problem.
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FO model checking on graphs

@ € FO(E®): first order formula describing a graph problem.

k k
@ :=3dx;,3dx,, ..., Axy, Vx, <\/x = x,.> \% <\/ E(x, xl-))
i=1

i=1

corresponds to k-Dominating Set problem.
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FO model checking on graphs

@ € FO(E@): first order formula describing a graph problem.

SEE
H: fixed graph with V(H) = {v;, ..., v, }.

(pH = ﬂxl, ﬂxz, coo g ﬂxk,

( /\ x,-#xj)/\ /\ E(x;,x;) | A /\ ~E(x;, x;)

1<i<j<k viv;EE(H) uveE(H)
it
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FO model checking on graphs

@ € FO(E®@): first order formula describing a graph problem.

SEME
H: fixed graph with V(H) = {vy, ..., v;}.

Qg =3dx;,3Ax,, ..., Ix,

( /\ xi?éxj)/\ /\ E(x;,x;) | A /\ —E(x;, X))

1<i<j<k v;v;EE(H) u-u-GE(ﬁ)
ilj

corresponds to the H-Induced Subgraph problem.
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FO model checking on graphs

@ € FO(E®@): first order formula describing a graph problem.

Definition

A class of graphs C is FO-FPT if there is an algorithm deciding for every
G € C whether G E ¢ in time O(f(|@]|) - n°D) for some computable f.
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FO model checking on graphs

@ € FO(E®@): first order formula describing a graph problem.

Definition

A class of graphs C is FO-FPT if there is an algorithm deciding for every
G € C whether G E ¢ in time O(f(|¢|) - n"°D) for some computable f.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

There exists an algorithm that, given a graph G, a certificate that
tww(G) < d and a formula @, decides whether G = ¢ in time

o/, o)) - n).
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FO model checking on graphs

@ € FO(E®): first order formula describing a graph problem.

Definition

A class of graphs C is FO-FPT if there is an algorithm deciding for every
G € C whether G E ¢ in time O(f(|@]|) - n"°D) for some computable f.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

There exists an algorithm that, given a graph G, a certificate that
tww(G) < d and a formula @, decides whether G E @ in time
o(fd,lel) - n.

Existence of an approximation algorithm for twin-width = classes of
bounded twin-width are FO-FPT.
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FO+MOD model checking on graphs

@ € FO + MOD(E®): first order formula describing a graph problem
where we also allow existential quantifiers 3Plx, ¢(x) expressing “there
exists i mod p witnesses x for ¢".
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FO+MOD model checking on graphs

@ € FO + MOD(E@): first order formula describing a graph problem
where we also allow existential quantifiers 3Plx, ¢(x) expressing “there
exists i mod p witnesses x for ¢".

@*(x,y) := 3Pz E(x,2) A E(2,)

“there exists an odd number of xy-paths of size 2".
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FO+MOD model checking on graphs

@ € FO + MOD(E?): first order formula describing a graph problem
where we also allow existential quantifiers 3Plx, ¢(x) expressing “there
exists i mod p witnesses x for ¢".

@*(x,y) := 3z E(x,2) A E(2,)

“there exists an odd number of xy-paths of size 2".

w(x,y) =30z E(x, 2) A 9?(2, )
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FO+MOD model checking on graphs

@ € FO + MOD(E®): first order formula describing a graph problem
where we also allow existential quantifiers 3Plx, ¢(x) expressing “there
exists i mod p witnesses x for ¢

Example
P*(x,y) := 32z, E(x, 2) A E(z, )

“there exists an odd number of xy-paths of size 2".

| A

SEME
w(x,y) := 3%z E(x,2) A 9*(2,y)

“there exists an even number of xy-paths of size 3".

A\
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FO+MOD model checking on graphs

@ € FO + MOD(E®): first order formula describing a graph problem
where we also allow existential quantifiers 317lx, (x) expressing “there
exists i mod p witnesses x for ¢

Definition

A class of graphs C is (FO+MOD)-FPT if there is an algorithm deciding
for every G € C whether G E ¢ in time O(f(|@|) - D) for some
computable f.
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FO+MOD model checking on graphs

@ € FO + MOD(E?): first order formula describing a graph problem
where we also allow existential quantifiers 3Plx, ¢(x) expressing “there
exists i mod p witnesses x for ¢".

Definition
A class of graphs C is (FO+MOD)-FPT if there is an algorithm deciding
for every G € C whether G E ¢ in time O(f(|@|) - n°D) for some
computable f.

¢

Theorem (BKTW 20, BGOT 22)

There exists an algorithm that, given a graph G, a certificate that
tww(G) < d and a FO+MOD formula ¢, decides whether G E @ in time
o(fd, lel) - n.

A,
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Interpretations and transductions

Interpretation: ¢(x,y) € FO(E®) (or FO + MOD(E®)) on two free
variables x, y. For every graph G, define ¢(G) on vertex set V(G) and edge
set: E(p(G@)) := {uv,G E p(u,v)}.
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®(G) = G: complement graph.
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Interpretations and transductions

Interpretation: @(x,y) € FO(E®) (or FO + MOD(E®)) on two free
variables x, y. For every graph G, define ¢(G) on vertex set V(G) and edge
set: E(@p(G)) :={uv,G E @(u,v)}.

@(x,y) = ~E(x,y)
®(G) = G: complement graph.

@(x,y) = E(x,y) v (3z, E(x, 2) A E(z,))
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Interpretations and transductions

Interpretation: @(x,y) € FO(E®) (or FO + MOD(E®)) on two free
variables x, y. For every graph G, define ¢(G) on vertex set V(G) and edge
set: E(p(G)) :={uv,G E @(u,v)}.

Example

@(x,y) = E(x, )
®(G) = G: complement graph.

| A

SEME

@(x,y) = E(x,y) vV (3z, E(x, 2) A E(z,y))

»(G) = G*: square graph.

A
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Interpretations and transductions

Interpretation: @(x,y) € FO(E®) (or FO + MOD(E®)) on two free
variables x, y. For every graph G, define ¢(G) on vertex set V(G) and edge
set: E(p(G)) :={uv,G E @(u,v)}.

C: class of graphs — @(C) := Clos{¢p(G),G € C}.
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Independence

G := class of all finite graphs.
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Independence

G := class of all finite graphs.

Definition

A hereditary class C of graphs is independent if there exists an
interpretation ¢(x,y) € FO such that ¢(C) = C.
Otherwise it is dependent.
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|
Independence

G := class of all finite graphs.

Definition

A hereditary class C of graphs is independent if there exists an
interpretation @(x, y) € FO such that ¢(C) = C.
Otherwise it is dependent.

| A

SEE

C :=Clos({K'",n € N'}) is independent.

N,
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Independence

G := class of all finite graphs.

Definition

A hereditary class C of graphs is independent if there exists an
interpretation ¢(x, y) € FO such that ¢(C) = G.
Otherwise it is dependent.

| A\

Example

C :=Clos({K'",n € N'}) is independent.

v

@(x,y) :=3z,(deg(z) <2)A E(x,z) A E(z,Y).
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Independence

G := class of all finite graphs.

Definition

A hereditary class C of graphs is independent if there exists an
interpretation @(x,y) € FO such that ¢(C) = C.
Otherwise it is dependent.

Example

C:= Clos({K,(,l),n € N'}) is independent.

| A\

p(x,y) :=13z, (V2 E(z,2) = (Z =x) V(2 = »)) A E(x,2) A E(z, ).
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Independence

G := class of all finite graphs.

Definition

A hereditary class C of graphs is independent if there exists an
interpretation @(x,y) € FO such that ¢(C) = C.
Otherwise it is dependent.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

If C is a class of graphs of twin-width at most t and ¢(x, y) an
interpretation, then:

tww(p(C)) < f(t, o))

for some computable f.

.
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|
Independence

G := class of all finite graphs.

Definition

A hereditary class C of graphs is independent if there exists an
interpretation @(x, y) € FO such that ¢(C) = G.
Otherwise it is dependent.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

If C is a class of graphs of twin-width at most t and @(x, y) an
interpretation, then:

tww(p(C)) < f(t, o))

for some computable f .

@ Also true for FO+MOD interpretations;

@ Classes of graphs of bounded twin-width are dependent.
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Twin-width of ordered structures

Graphs are given together with a total order on their vertices.
Equivalent to work on an adjacency matrix of G.
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Twin-width of ordered structures
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Left: Total order on V(G): a<b<c<d<e< f <g. Right: the
associated ordered adjacency matrix.
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Twin-width of ordered structures

1 1 0(0(|0]1

1

1

0

1100 1

1

S

cl0 1 0 0f1{1]|0

b1 0 1 1]1(/1|0

13/1

Umed February 2023



Twin-width of ordered structures
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Twin-width of ordered structures
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Twin-width of ordered structures
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Twin-width of ordered structures
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Twin-width of ordered structures

A graph G has twin-width at most d if and only if there is a total ordering
< of V(G) such that (G, <) has twin-width at most d.
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Twin-width of ordered structures

A graph G has twin-width at most d if and only if there is a total ordering
< of V(G) such that (G, <) has twin-width at most d.

Definition of twin-width can be extended to matrices with entries on a
finite alphabet (e.g. F,).

Ume3 February 2023 13/1



Algorithmic aspect of twin-width for ordered structures

Theorem (BGOSTT 21)
There is an algorithm that, given an ordered graph (G, <) and an integer d,
returns in time O(f(d)n*log(n)):

e ‘No" if tww(G) > d;
@ a g(d)-sequence otherwise.
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Algorithmic aspect of twin-width for ordered structures

Theorem (BGOSTT 21)
There is an algorithm that, given an ordered graph (G, <) and an integer d,
(9(d2 log(d))
returns in time 2222 n*log(n):
e “No” if tww(G) > d;
20(4*)
@ a2? -sequence otherwise.
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Algorithmic aspect of twin-width for ordered structures

Theorem (BGOSTT 21)
There is an algorithm that, given an ordered graph (G, <) and an integer d,
returns in time O(f(d)n*log(n)):

e ‘No" if tww(G) > d;
@ a g(d)-sequence otherwise.
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Characterizations of twin-width boundedness in the ordered
case

Theorem (Graph version)

Let C be a hereditary class of ordered graphs. The following are equivalent.

@ C has bounded twin-width;

@ C is FO-FPT;

© C is (FO+MOD)-FPT:;

Q C is dependent;

@ C is (FO+MOD)-dependent;

@ C contains 29" ordered n-vertex graphs.

@ C contains less than Y. ]E';/OZJ (,;) k! ordered n-vertex graphs, for some
n.

. Ui Rty s il
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Matrix multiplication

A, B: matrices over [, (or ).
Goal: Compute A - B in time f(tww(A), tww(B)) - n®D.
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-]
Matrix multiplication

A, B: matrices over [, (or ).
Goal: Compute A - B in time f(tww(A), tww(B)) - n®D.

(55) ()= (¥ 5)

allows to reduce to the problem of squaring a matrix.
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Graph interpretation

Definition

G: graph. Gl: modular square of G, with same vertices and:

EGPY) :={uv : INW)NN(@)| =1 (mod 2)}.
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-]
Graph interpretation

Definition

G: graph. G"I: modular square of G, with same vertices and:

EG?Y :={uv : INW)NN(@)| =1 (mod 2)}.

The adjacency matrices of G'?! are square of the ones of G.
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Graph interpretation

Definition

G: graph. G"I: modular square of G, with same vertices and:

EG?Y :={uv : INW)NnN(@)| =1 (mod 2)}.

The adjacency matrices of G are square of the ones of G.
(7
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A first “algorithm”

@Pl(x,y) := 32z E(x,2) A E(z,y). For every G: ¢/(G) = G?!.
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A first “algorithm”

@Pl(x,y) := 32z E(x,2) A E(z,y). For every G: ¢/(G) = G?!.

Theorem
e Given a twin-decomposition of width d of G, a twin-decomposition of
width f(d) of G'* can be computed in time f(d) - n.
o Together with approximation algorithm + previous remarks — there is
a (911711(}f12 log(n))-time algorithm taking A, B n X n matrices and
returning AB.
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A first “algorithm”

@Pl(x,y) := 32z E(x,2) A E(z,y). For every G: ¢/(G) = G?!.

Theorem
e Given a twin-decomposition of width d of G, a twin-decomposition of
width f(d) of G'* can be computed in time f(d) - n.
o Together with approximation algorithm + previous remarks — there is
a (911711(}f12 log(n))-time algorithm taking A, B n X n matrices and
returning AB. |

Completely unpractical
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A “real” algorithm for matrix multiplication

There exists a O(d*49n)-time algorithm that, given a graph G and a
certificate that tww(G) < d, outputs a certificate that
tww(G?) = O(d*2?) encoding G
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A “real” algorithm for matrix multiplication

There exists a O(d*49n)-time algorithm that, given a graph G and a
certificate that tww(G) < d, outputs a certificate that
tww(G?) = O(d*2?) encoding G

— Extends to a FPT-algorithm for matrix multiplication over [, with same
complexity.
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certificate that tww(G) < d, outputs a certificate that
tww(G?) = O(d*2?) encoding G

— Extends to a FPT-algorithm for matrix multiplication over [, with same
complexity.
— Extends over [, for g: prime power.
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|
A “real” algorithm for matrix multiplication

There exists a O(d*49n)-time algorithm that, given a graph G and a
certificate that tww(G) < d, outputs a certificate that
tww(G?Y = Od*2?) encoding G'?).

— Extends to a FPT-algorithm for matrix multiplication over [, with same
complexity.

— Extends over [, for g: prime power.

Can be combined with approximation algorithm to give a (deq(n2 log(n))
algorithm computing product of matrices A and B when

tww(A), tww(B) < d.
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