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The degree/diameter problem.

Question
What is the largest possible order nΔ,D of a graph with maximum degree Δ
and diameter D?

Directed version: with Δ+.
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Conjecture (Bollobás 1972)

For every " > 0, nΔ,D ⩾ (1 − ")ΔD.
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The degree/diameter problem on restricted classes.

Vertex-transitive and Cayley graphs
Bipartite graphs
Planar graphs
Graphs embedded on surfaces.
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The degree/diameter problem on planar graphs.

Theorem (Tishchenko 2012)

For every D even and every Δ large enough, we have

npΔ,D =

⌊

3Δ
2

⋅
(Δ − 1)

D
2 − 1

Δ − 2

⌋

+ 1.
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The degree/diameter problem on diameter 3 planar graphs.

Theorem (Fellows, Hell, Seyffarth 1995)

For every Δ ⩾ 8,
⌊9
2
Δ
⌋

− 3 ⩽ npΔ,3 ⩽ 8Δ + 12
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The degree/diameter problem on diameter 3 planar graphs.

Theorem (Fellows, Hell, Seyffarth 1995)

For every Δ ⩾ 8,
⌊9
2
Δ
⌋

− 3 ⩽ npΔ,3 ⩽ 8Δ + 12

npΔ,3 also known when
G is a quadrangulation of the plane (Dalfo, Huemer, Salas 2016);
G is a pentagulation of the plane (Du Preez 2024).

Open when G is a triangulation of the plane.
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2
Δ
⌋

− 3 ⩽ npΔ,3 ⩽ 8Δ + 12

npΔ,3 also known when
G is a quadrangulation of the plane (Dalfo, Huemer, Salas 2016);
G is a pentagulation of the plane (Du Preez 2024).

Open when G is a triangulation of the plane.

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

npΔ,3 =
9
2
Δ + O(1)

+ Structural “characterization” of extremal classes.
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Constructions of large planar graphs with D = 3.

A neighbouring set of edges in a graph G is a set F ⊆ E(G) s.t. every two
edges e, e′ ∈ F are at distance at most 1 in G.
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Constructions of large planar graphs with D = 3.

A neighbouring set of edges in a graph G is a set F ⊆ E(G) s.t. every two
edges e, e′ ∈ F are at distance at most 1 in G.

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

For every K5-minor free graph G and every neighbouring set of edges
F ⊆ E(G) we have

�f (G[F ]) ⩽
9
2
.
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Fractional matchings/vertex covers
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Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

For every K5-minor free graph G and every neighbouring set of edges
F ⊆ E(G) we have

�f (G[F ]) ⩽
9
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.

� ∶ E(G)→ ℝ⩾0 is a fractional matching of G if for every v ∈ V (G),
∑

e∶v∈e �(v) ⩽ 1.
�f (G) ∶= maximum value of a fractional matching of G.
� ∶ V (G)→ ℝ⩾0 is a fractional vertex cover of G if for every uv ∈ E(G),
�(u) + �(v) ⩾ 1.
�f (G) ∶= minimum value of a fractional vertex cover of G.

Theorem (Strong duality of LP)

For every graph we have �(G) ⩽ �f (G) = �f (G) ⩽ �(G).
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Proof sketch that �f ⩽ 9
2
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Blackboard.
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From degree/diameter to neighbouring sets.

10 / 16



From degree/diameter to neighbouring sets.

10 / 16



From degree/diameter to neighbouring sets.

|Vin|
∆
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Lanterns

A lantern L with hubs u, v is a collection of internally disjoint (u, v)-paths.

u v
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length
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Lanterns

A lantern L with hubs u, v is a collection of internally disjoint (u, v)-paths.
L is dominating if there exists a face F of G[L] such that G − F is
dominated by u, v.

Lemma (Lantern extraction)

Let G be a planar graph of diameter 3. If G has a lantern L of width 78,
then L has a dominating sublantern of length at most 3, which can be
“safely” emptied.

More details on blackboard.
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General strategy

Start from graph G0 ∶= G; auxiliary graph Γ0. While Gi contains a lantern
of width 78, take L′ given by the extraction lemma and empty it. Gives a
graph Gi+1. Empty also L′ in Γi and add properly the associated red edges
to obtain Γi+1.

ui vi

Gi

ui vi

Γi+1
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General strategy

Theorem (MacGillivray, Seyffarth 1996)

Every planar graph G of diameter 3 has a dominating set of size 10.
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Conclusion and further directions

Theorem
9
2
Δ − 3 ⩽ npΔ,3 ⩽

9
2
Δ + 9 + 783

Exact bound for npΔ,3? For general odd D?
More general ways to reduce to fractional matching problems in other
classes, e.g. bounded genus graphs?
In general, |V (G)| ⩽ 
f (G)(Δ + 1). If G is planar, large enough with
diameter 3, then 
(G) ⩽ 6 (Dorfling, Goddard, Henning 2006). What
is the maximal possible value for 
f (G)?
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Thank you for your attention.
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