Ugo Giocanti Joint work with Antoine Dailly, Sasha Darmon, Claire Hilaire and Petru Valicov

Uniwersytet Jagielloński, Kraków

Séminaire AIGCo, Montpellier.

Question

What is the largest possible order $n_{\Delta,D}$ of a graph with maximum degree Δ and diameter D?

Directed version: with Δ^+ .

Question

What is the largest possible order $n_{\Delta,D}$ of a graph with maximum degree Δ and diameter D?

Directed version: with Δ^+ .

Moore bound:

$$n_{\Delta,D} \leqslant M_{\Delta,D} := 1 + \Delta + \Delta(\Delta - 1) + \dots + \Delta(\Delta - 1)^{D-1}$$

Question

What is the largest possible order $n_{\Delta,D}$ of a graph with maximum degree Δ and diameter D?

Directed version: with Δ^+ .

Moore bound:

$$n_{\Delta,D} \le M_{\Delta,D} := 1 + \Delta + \Delta(\Delta - 1) + \dots + \Delta(\Delta - 1)^{D-1}$$

Lower bounds (when $D \geqslant 3$):

$$n_{\Delta,D} \geqslant \left(\frac{\Delta}{2}\right)^D$$
 (De Bruijn 1946, I.J. Good 1946).

$$n_{\Delta,D} \geqslant \left(\frac{\Delta}{1.6}\right)^D$$
 (Canale and Gómez 2005)

Question

What is the largest possible order $n_{\Delta,D}$ of a graph with maximum degree Δ and diameter D?

Directed version: with Δ^+ .

Moore bound:

$$n_{\Delta,D} \leqslant M_{\Delta,D} := 1 + \Delta + \Delta(\Delta - 1) + \dots + \Delta(\Delta - 1)^{D-1}$$

Lower bounds (when $D \ge 3$):

$$n_{\Delta,D} \geqslant \left(\frac{\Delta}{2}\right)^D$$
 (De Bruijn 1946, I.J. Good 1946).

$$n_{\Delta,D} \geqslant \left(\frac{\Delta}{1.6}\right)^D$$
 (Canale and Gómez 2005)

Conjecture (Bollobás 1972)

For every $\varepsilon > 0$, $n_{\Delta,D} \geqslant (1 - \varepsilon)\Delta^{D}$.

The degree/diameter problem on restricted classes.

- Vertex-transitive and Cayley graphs
- Bipartite graphs
- Planar graphs
- Graphs embedded on surfaces.

The degree/diameter problem on restricted classes.

- Vertex-transitive and Cayley graphs
- Bipartite graphs
- Planar graphs
- Graphs embedded on surfaces.

Question

What is the largest possible order $np_{\Delta,D}$ of a planar graph with maximum degree Δ and diameter D?

Question

What is the largest possible order $np_{\Delta,D}$ of a planar graph with maximum degree Δ and diameter D?

Theorem (Hell, Seyffarth 1993)

For every $\Delta \geqslant 8$,

$$np_{\Delta,2} = \left| \frac{3}{2} \Delta \right| + 1$$

Question

What is the largest possible order $np_{\Delta,D}$ of a planar graph with maximum degree Δ and diameter D?

Theorem (Hell, Seyffarth 1993)

For every $\Delta \geqslant 8$,

$$np_{\Delta,2} = \left\lfloor \frac{3}{2} \Delta \right\rfloor + 1$$

Theorem (Fellows, Hell, Seyffarth 1995)

For every $D \geqslant 1$,

$$\mathrm{np}_{\Delta, \mathbf{D}} = \Theta\left(\Delta^{\lfloor \frac{\mathbf{D}}{2} \rfloor}\right)$$

Theorem (Tishchenko 2012)

For every D even and every Δ large enough, we have

$$np_{\Delta,D} = \left| \frac{3\Delta}{2} \cdot \frac{(\Delta - 1)^{\frac{D}{2}} - 1}{\Delta - 2} \right| + 1.$$

Theorem (Fellows, Hell, Seyffarth 1995)

For every $\Delta \geqslant 8$,

$$\left\lfloor \frac{9}{2}\Delta \right\rfloor - 3 \leqslant np_{\Delta,3} \leqslant 8\Delta + 12$$

Theorem (Fellows, Hell, Seyffarth 1995)

For every $\Delta \geqslant 8$,

$$\left\lfloor \frac{9}{2}\Delta \right\rfloor - 3 \leqslant np_{\Delta,3} \leqslant 8\Delta + 12$$

Theorem (Fellows, Hell, Seyffarth 1995)

For every $\Delta \geqslant 8$,

$$\left\lfloor \frac{9}{2}\Delta \right\rfloor - 3 \leqslant np_{\Delta,3} \leqslant 8\Delta + 12$$

 $np_{\Lambda 3}$ also known when

- G is a quadrangulation of the plane (Dalfo, Huemer, Salas 2016);
- G is a pentagulation of the plane (Du Preez 2024).

Open when G is a triangulation of the plane.

Theorem (Fellows, Hell, Seyffarth 1995)

For every $\Delta \geqslant 8$,

$$\left\lfloor \frac{9}{2}\Delta \right\rfloor - 3 \leqslant np_{\Delta,3} \leqslant 8\Delta + 12$$

 $np_{\Lambda,3}$ also known when

- G is a quadrangulation of the plane (Dalfo, Huemer, Salas 2016);
- G is a pentagulation of the plane (Du Preez 2024).

Open when G is a triangulation of the plane.

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

$$np_{\Delta,3} = \frac{9}{2}\Delta + O(1)$$

+ Structural "characterization" of extremal classes.

A neighbouring set of edges in a graph G is a set $F \subseteq E(G)$ s.t. every two edges $e, e' \in F$ are at distance at most 1 in G.

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

$$\mu_f(G[F]) \leqslant \frac{9}{2}.$$

A neighbouring set of edges in a graph G is a set $F \subseteq E(G)$ s.t. every two edges $e, e' \in F$ are at distance at most 1 in G.

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

$$\mu_f(G[F]) \leqslant \frac{9}{2}.$$

A neighbouring set of edges in a graph G is a set $F \subseteq E(G)$ s.t. every two edges $e, e' \in F$ are at distance at most 1 in G.

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

$$\mu_f(G[F]) \leqslant \frac{9}{2}.$$

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

$$\mu_f(G[F]) \leqslant \frac{9}{2}.$$

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

For every K_5 -minor free graph G and every neighbouring set of edges $F \subseteq E(G)$ we have

$$\mu_f(G[F]) \leqslant \frac{9}{2}.$$

 $\mu: E(G) \to \mathbb{R}_{\geqslant 0}$ is a fractional matching of G if for every $v \in V(G)$,

 $\sum_{e:v\in e}\mu(v)\leqslant 1.$

 $\mu_f(G) := \text{maximum value of a fractional matching of } G.$

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

For every K_5 -minor free graph G and every neighbouring set of edges $F \subseteq E(G)$ we have

$$\mu_f(G[F]) \leqslant \frac{9}{2}.$$

 $\mu: E(G) \to \mathbb{R}_{\geqslant 0}$ is a fractional matching of G if for every $v \in V(G)$,

 $\sum_{e:v\in e}\mu(v)\leqslant 1.$

 $\mu_f(G) := \text{maximum value of a fractional matching of } G.$

 $\rho: V(G) \to \mathbb{R}_{\geqslant 0}$ is a fractional vertex cover of G if for every $uv \in E(G)$,

 $\mu(u) + \mu(v) \geqslant 1.$

 $\rho_f(G) := \text{minimum value of a fractional vertex cover of } G.$

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

For every K_5 -minor free graph G and every neighbouring set of edges $F \subseteq E(G)$ we have

$$\mu_f(G[F]) \leqslant \frac{9}{2}.$$

 $\mu: E(G) \to \mathbb{R}_{\geqslant 0}$ is a fractional matching of G if for every $v \in V(G)$,

$$\sum_{e:v\in e}\mu(v)\leqslant 1.$$

 $\mu_f(G) := \text{maximum value of a fractional matching of } G.$

 $\rho: V(G) \to \mathbb{R}_{\geqslant 0}$ is a fractional vertex cover of G if for every $uv \in E(G)$,

$$\mu(u) + \mu(v) \geqslant \hat{1}$$
.

 $\rho_f(G) := \text{minimum value of a fractional vertex cover of } G.$

Theorem (Strong duality of LP)

For every graph we have $\mu(G) \leqslant \mu_f(G) = \rho_f(G) \leqslant \rho(G)$.

Proof sketch that $\mu_f \leqslant \frac{9}{2}$

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

$$\mu_f(G[F]) \leqslant \frac{9}{2}.$$

Proof sketch that $\mu_f \leqslant \frac{9}{2}$

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

For every K_5 -minor free graph G and every neighbouring set of edges $F \subseteq E(G)$ we have

$$\mu_f(G[F]) \leqslant \frac{9}{2}.$$

Blackboard.

Lanterns

A lantern L with hubs u,v is a collection of internally disjoint (u,v)-paths.

Lanterns

A lantern L with hubs u, v is a collection of internally disjoint (u, v)-paths. L is dominating if there exists a face F of G[L] such that G - F is dominated by u, v.

Lanterns

A lantern L with hubs u, v is a collection of internally disjoint (u, v)-paths. L is dominating if there exists a face F of G[L] such that G - F is dominated by u, v.

Lemma (Lantern extraction)

Let G be a planar graph of diameter 3. If G has a lantern L of width 78, then L has a dominating sublantern of length at most 3, which can be "safely" emptied.

More details on blackboard.

Start from graph $G_0 := G$; auxiliary graph Γ_0 . While G_i contains a lantern of width 78, take L' given by the extraction lemma and empty it. Gives a graph G_{i+1} . Empty also L' in Γ_i and add properly the associated red edges to obtain Γ_{i+1} .

Start from graph $G_0 := G$; auxiliary graph Γ_0 . While G_i contains a lantern of width 78, take L' given by the extraction lemma and empty it. Gives a graph G_{i+1} . Empty also L' in Γ_i and add properly the associated red edges to obtain Γ_{i+1} .

Lemma

At each step i, the set F_i of red edges is a neighbouring set of edges of Γ .

Start from graph $G_0 := G$; auxiliary graph Γ_0 . While G_i contains a lantern of width 78, take L' given by the extraction lemma and empty it. Gives a graph G_{i+1} . Empty also L' in Γ_i and add properly the associated red edges to obtain Γ_{i+1} .

Lemma

At each step i, the set F_i of red edges is a neighbouring set of edges of Γ .

Proposition

At the end of the procedure, we are left with a planar graph G_i of diameter 3 without lantern of width 78, and with F_i neighbouring set of edges of Γ_i such that

$$|V(G) \setminus V(G_i)| \le \mu_f(\Gamma_i[F]) \cdot \Delta(G).$$

Proposition

At the end of the procedure, we are left with a planar graph G_i of diameter 3 without lantern of width 78, and with F_i neighbouring set of edges of Γ_i such that

$$|V(G) \setminus V(G_i)| \leq \mu_f(\Gamma_i[F]) \cdot \Delta(G).$$

Theorem (MacGillivray, Seyffarth 1996)

Every planar graph G of diameter 3 has a dominating set of size 10.

 $|D| \leq 10$ $G_0 - D$

Theorem (MacGillivray, Seyffarth 1996)

Every planar graph G of diameter 3 has a dominating set of size 10.

D

|D| < 10

Theorem (MacGillivray, Seyffarth 1996)

Every planar graph G of diameter 3 has a dominating set of size 10.

$$G_0 - D$$

$$\Delta(G_0 - D) = O(1)$$

Theorem (MacGillivray, Seyffarth 1996)

Every planar graph G of diameter 3 has a dominating set of size 10.

 $|D| \le 10$

$$G_0 - D$$

$$\Delta(G_0 - D) = O(1)$$

Theorem

$$\frac{9}{2}\Delta - 3 \leqslant np_{\Delta,3} \leqslant \frac{9}{2}\Delta + 9 + 78^3$$

Theorem

$$\frac{9}{2}\Delta - 3 \le np_{\Delta,3} \le \frac{9}{2}\Delta + 9 + 78^3$$

• Exact bound for $np_{\Delta,3}$?

Theorem

$$\frac{9}{2}\Delta - 3 \le np_{\Delta,3} \le \frac{9}{2}\Delta + 9 + 78^3$$

• Exact bound for $np_{\Delta,3}$? For general odd D?

Theorem

$$\frac{9}{2}\Delta - 3 \leqslant np_{\Delta,3} \leqslant \frac{9}{2}\Delta + 9 + 78^3$$

- Exact bound for $np_{\Delta,3}$? For general odd D?
- More general ways to reduce to fractional matching problems in other classes, e.g. bounded genus graphs?

Theorem

$$\frac{9}{2}\Delta - 3 \leqslant np_{\Delta,3} \leqslant \frac{9}{2}\Delta + 9 + 78^3$$

- Exact bound for $np_{\Delta,3}$? For general odd D?
- More general ways to reduce to fractional matching problems in other classes, e.g. bounded genus graphs?
- In general, $|V(G)| \leqslant \gamma_f(G)(\Delta+1)$. If G is planar, large enough with diameter 3, then $\gamma(G) \leqslant 6$ (Dorfling, Goddard, Henning 2006). What is the maximal possible value for $\gamma_f(G)$?

Thank you for your attention.