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The degree/diameter problem.

What is the largest possible order n, p, of a graph with maximum degree A
and diameter D?

Directed version: with A*.
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The degree/diameter problem.

What is the largest possible order ny , of a graph with maximum degree A
and diameter D?

Directed version: with A*.
Moore bound:

Nap S Muyp:i=1+A+AA-D+...+A-DP!
Lower bounds (when D > 3):

D

na p > (%) (De Bruijn 1946, 1.J. Good 1946).
D

NAp = <%> (Canale and Gémez 2005)

Conjecture (Bollobas 1972)

For every e >0, ny , > (1 —e)AP.
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The degree/diameter problem on restricted classes.

@ Vertex-transitive and Cayley graphs
@ Bipartite graphs
o Planar graphs

@ Graphs embedded on surfaces.
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The degree/diameter problem on planar graphs.

What is the largest possible order np, j, of a planar graph with maximum
degree A and diameter D?

Theorem (Hell, Seyffarth 1993)
For every A > 8,

A2-1 A/2—-1
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The degree/diameter problem on planar graphs.

What is the largest possible order np, p, of a planar graph with maximum
degree A and diameter D?

Theorem (Hell, Seyffarth 1993)

For every A > 8,

3

Theorem (Fellows, Hell, Seyffarth 1995)

For every D > 1,
D
a0 =0 (191)
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The degree/diameter problem on planar graphs.

Theorem (Tishchenko 2012)

For every D even and every A large enough, we have

D
3A (A-12 -1
NPpa p = {'Ez" ‘———zgj:-i————‘ + 1.
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The degree/diameter problem on diameter 3 planar graphs.

Theorem (Fellows, Hell, Seyffarth 1995)

For every A > 8,
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The degree/diameter problem on diameter 3 planar graphs.

Theorem (Fellows, Hell, Seyffarth 1995)

For every A > 8,

np, 3 also known when
e G is a quadrangulation of the plane (Dalfo, Huemer, Salas 2016);
e G is a pentagulation of the plane (Du Preez 2024).

Open when G is a triangulation of the plane.
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e G is a quadrangulation of the plane (Dalfo, Huemer, Salas 2016);
e G is a pentagulation of the plane (Du Preez 2024).

Open when G is a triangulation of the plane.

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+ )

9

+ Structural “characterization” of extremal classes.
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Constructions of large planar graphs with D = 3.

A neighbouring set of edges in a graph G is a set F C E(G) s.t. every two
edges e,e’ € F are at distance at most 1 in G.
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Constructions of large planar graphs with D = 3.

A neighbouring set of edges in a graph G is a set F C E(G) s.t. every two
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Value 2—65
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0 2 2
1
2
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Constructions of large planar graphs with D = 3.

A neighbouring set of edges in a graph G is a set F C E(G) s.t. every two
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F C E(G) we have
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Fractional matchings/vertex covers

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)
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F C E(G) we have
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Fractional matchings/vertex covers

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

For every Ks-minor free graph G and every neighbouring set of edges
F C E(G) we have

HGIFD < 3.

u . E(G) = Ry is a fractional matching of G if for every v € V(G),

Devee H(W) S 1.
#¢(G) := maximum value of a fractional matching of G.

p : V(G) = Ry, is a fractional vertex cover of G if for every uv € E(G),
u) + pu(v) 2 1.
p(G) := minimum value of a fractional vertex cover of G.

Theorem (Strong duality of LP)

For every graph we have u(G) < ,uf(G) = pf(G) < p(G).
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Proof sketch that Hy < g

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)
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Proof sketch that Hy < g

Theorem (Dailly, Darmon, G., Hilaire, Valicov 2025+)

For every Ks-minor free graph G and every neighbouring set of edges
F C E(G) we have

1y GIF) < 2.

Blackboard.
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From degree/diameter to neighbouring sets.
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Lanterns

A lantern L with hubs u, v is a collection of internally disjoint (u, v)-paths.
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Lanterns

A lantern L with hubs u, v is a collection of internally disjoint (u, v)-paths.
L is dominating if there exists a face F of G[L] such that G — F is
dominated by u, v.

Lemma (Lantern extraction)

Let G be a planar graph of diameter 3. If G has a lantern L of width 78,
then L has a dominating sublantern of length at most 3, which can be
“safely” emptied.

More details on blackboard.
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General strategy

Start from graph G, := G; auxiliary graph I'y. While G, contains a lantern
of width 78, take L’ given by the extraction lemma and empty it. Gives a
graph G, ,. Empty also L’ in T'; and add properly the associated red edges
to obtain I';, ;.
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Every planar graph G of diameter 3 has a dominating set of size 10.

D D <10
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Conclusion and further directions

A=3<npy; < sA+9+78

2
2
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R
Conclusion and further directions

%A—3<npA3<§A+9+783

e Exact bound for np, ;7 For general odd D?

@ More general ways to reduce to fractional matching problems in other
classes, e.g. bounded genus graphs?

@ In general, [V(G)| < 7/(G)(A + 1). If G is planar, large enough with
diameter 3, then y(G) < 6 (Dorfling, Goddard, Henning 2006). What
is the maximal possible value for y(G)?
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Thank you for your attention.
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