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Introduced by Quilliot (1978) and Nowakowski and Winkler (1983).
Full information game on a fixed finite graph G. Initially, k cops
¢y, ..., ¢, choose positions vy, ..., v, € V(G).  The robber r then chooses

a position v € V (G).
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Introduced by Quilliot (1978) and Nowakowski and Winkler (1983).

Full information game on a fixed finite graph G.

Cop number cop(G) of G := min number of cops required to win on G.
A collection of cops {¢,...,c,} guards a subgraph H of G if these cops
have a strategy in which, from some step, they can occupy vertices of H,
and ensure that the robber will not be able to occupy a vertex of H
anymore.
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Introduced by Quilliot (1978) and Nowakowski and Winkler (1983).

Full information game on a fixed finite graph G.

Cop number cop(G) of G := min number of cops required to win on G.
A collection of cops {¢,...,c,} guards a subgraph H of G if these cops
have a strategy in which, from some step, they can occupy vertices of H,
and ensure that the robber will not be able to occupy a vertex of H
anymore.

Lemma (Aigner, Fromme 1984)
Every shortest path in a finite graph is guardable by one cop.

Corollary (Aigner, Fromme 1984)

For every planar graph G, cop(G) < 3.

2/16



-]
Coarse cops and robber games.

How to define cops and robber game in infinite graph?

3/16



-]
Coarse cops and robber games.

How to define cops and robber game in infinite graph?
e Pursuit-evasion variant in geodesic spaces (Mohar 2021).

3/16



|
Coarse cops and robber games.

How to define cops and robber game in infinite graph?
e Pursuit-evasion variant in geodesic spaces (Mohar 2021).

@ Coarse variants introduced by Lee, Martinez-Pedroza, and
Rodriguez-Quinche (2023).
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Coarse cops and robber games.

G: fixed infinite graph.

Settings: k cops ¢y, ...,c;, with speed 5, > 1 and reach p > 1. One robber
with speed s, > 1. B = B(v,, R): fixed ball of finite radius R > 1.
Step 0: ¢y, ..., ¢, choose positions vy, ..., v, € V(G). Then the robber r

chooses a position v € V(G) at distance > p from the cops.

Step i > 1: every cop can move using any path of length at most s,. If after
their moves, r is at distance at most p from a cop, the cops immediately
win. Otherwise, the robber can move using any path of lenth at most s,..
Goal of robber: enter in B infinitely many times without being captured.
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Settings: k cops ¢y, ...,c;, with speed 5, > 1 and reach p > 1. One robber
with speed s, > 1. B = B(vy, R): fixed ball of finite radius R > 1.

G is CopWin(k, s, p, s,, R) if k cops have a winning strategy with
parameters (k, s, p, s,, R) for every ball B of radius R.

Weak game:

1. ¢y,...,¢; choose s, and p.

2. r chooses s, and R.
Strong game:

1. ¢|,...,¢; choose s,.

2. r chooses s,.

3. ¢|,..., ¢, choose p.

4. r chooses R
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Coarse cops and robber games.

G: fixed infinite graph.
Settings: k cops ¢y, ...,c;, with speed 5, > 1 and reach p > 1. One robber
with speed s, > 1. B = B(v,, R): fixed ball of finite radius R > 1.
G is CopWin(k, s, p, s,, R) if k cops have a winning strategy with
parameters (k, s, p, s,, R) for every ball B of radius R.
Weak game:
1. ¢y,...,¢; choose s, and p.
2. r chooses s, and R.
Strong game:

1. ¢/,...,c; choose s,.
2. r chooses s,.
3. ¢/,..., ¢, choose p.

4. r chooses R
Weak (resp. Strong) cop number wCop(G) € NU {oo} (resp.
sCop(G) € NU {o0}) of G: infimum over the k > 1 such that k cops win

the weak (resp. strong) game.
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Coarse cops and robber games

Weak (resp. Strong) cop number wCop(G) € NU {oo} (resp.
sCop(G) € NU {oo}) of G: infimum over the k > 1 such that k cops win
the weak (resp. strong) game.

e If G is connected, then the center v, of B does not matter.
@ sCop(G) < wCop(G).

5/16



|
Quasi-isometries

Two (infinite) graphs G, H are quasi-isometric if there exist
[/ V(H)— V(G) and constants A, B, C > 0 such that:

(1)
Y,y € VIH), Sdyy(x,9) = B < dg(/ (), /() < Adyy () + B,

(2) for every y € V(G), there exists x € V(H) such that dg(y, /(x)) < C.
If only (1) holds, then f is a quasi-isometric embedding.
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Quasi-isometry invariance

Theorem (Lee, Martinez-Pedroza, Rodriguez-Quinche 2023)

If G and H are quasi-isometric, then wCop(G) = wCop(H ) and
sCop(G) = sCop(H).

Theorem (Esperet, Gahlawat, G.)

If f + H— G is a quasi-isometric embedding, then wCop(H) < wCop(G)
and sCop(H) < sCop(G).

Proof idea: blackboard.
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Cop number of groups

(T, +): group, S: finite set of generators. Cay(I',.S) : graph with vertex set
I" and adjacencies {x,x - a} for every x el,a € S.

° (j'jo—i— 1) °
G-1) . il
)
° (i,j.f 1) ° .
(M) = (2 +)
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Cop number of groups

(T, +): group, S: finite set of generators. Cay(I',.S) : graph with vertex set

I" and adjacencies {x,x - a} for every x el,a € S.

(F) = (Z+)
a:=(1,0),b:=(0,1)
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Cop number of groups

(T, -): group, S: finite set of generators. Cay(I',.S) : graph with vertex set
I" and adjacencies {x,x - a} for every x el,a € S.

Eotoy
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I" and adjacencies {x,x - a} for every x el,a € S.

— How are Cay(I', ) and Cay(I', S”) related for two different finite
generating sets .S, 5’7
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Cop number of groups

(T, +): group, S: finite set of generators. Cay(I',.S) : graph with vertex set
I" and adjacencies {x,x - a} for every x el,a € S.

— How are Cay(I', ) and Cay(I', S”) related for two different finite
generating sets .S, 5’7

Proposition

Two Cayley graphs of a same group I' are quasi-isometric.

— One can define the weak/strong cop number of finitely generated
groups.
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For every tree T, wCop(T') = sCop(T) = 1. \
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For every tree T, wCop(T) = sCop(T) = 1. In particular, if G is
quasi-isometric to a tree, then wCop(G) = sCop(G) = 1.
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treewidth at most t, then wCop(G) <t + 1.
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Examples.

Proposition

If a locally finite connected graph G is quasi-isometric to a graph of
treewidth at most t, then wCop(G) <1+ 1.

The bound is tight.

AV N

Here: tw(G) = 2, while wCop(G) > 3.
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Examples.

Proposition

If a locally finite connected graph G is quasi-isometric to a graph of
treewidth at most t, then wCop(G) <t + 1.

A graph G with tw(G) = 2 and sCop(G) = wCop(G) = co.
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wCop and asymptotic minors.

H: finite graph. A D-fat model of H in G is a family
((Vx)er(H)’ (ny)xyeE(H)) where:
e for each x € V(H), V, induces a connected subgraph of G,
P, is a path with one endpoint in V, and the other in V,
for every x # y e V(H), d;(V,,V,) > D,
every path P, is at distance > D in G from every other path P,
and from every V, with z € V(H) \ {x, y}.
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wCop and asymptotic minors.

H: finite graph. A D-fat model of H in G is a family
(Vxev iy (Pey)xyerar)) Where:
e for each x € V(H), V, induces a connected subgraph of G,
e P, is a path with one endpoint in ¥, and the other in V,
o forevery x#yeV(H), d;(V,,V,) = D,
e every path P, is at distance > D in G from every other path P,
and from every V, with z € V(H) \ {x,y}.

H is an asymptotic minor of G, denoted H < G, if there is a D-fat
model of H in G for every D > 1.

Remark (Georgakopoulos, Papasoglou 2023)

For every fixed graph H, and every two quasi-isometric graphs G,G’,

(H=<,G) & (H=<,G.
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e for each x € V(H), V, induces a connected subgraph of G,
e P, is a path with one endpoint in ¥, and the other in V,
o forevery x#yeV(H), d;(V,,V,) = D,

e every path P, is at distance > D in G from every other path P,
and from every V, with z € V(H) \ {x,y}.

H is an asymptotic minor of G, denoted H < G, if there is a D-fat
model of H in G for every D > 1.
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wCop and asymptotic minors.

Theorem (Esperet, Gahlawat, G.)

For every finite graph H, if H < G, then

tw(H) < wCop(G).

The bound is tight.

K, K K

— G is such that K, < G and wCop(G) = tw(K,) =1t — 1.
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wCop and asymptotic minors.

Theorem (Esperet, Gahlawat, G.)
For every finite graph H, if H < G, then

tw(H) < wCop(G).

Conjecture (Georgakopoulos, Papasoglou 2023)

A graph G is quasi-isometric to a graph of finite treewidth if and only if it
excludes a finite k X k grid as an asymptotic minor.

A\

| Excludes a finite grid as asymptotic minor |

Quasi-isometric to a graph of finite treewidth
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9

=7 | wCop(G) < oo

C

=

Quasi-isometric to a graph of finite treewidthl
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wCop and asymptotic minors.

Theorem (Esperet, Gahlawat, G.)
For every finite graph H, if H < G, then

tw(H) < wCop(G).

sup{tw(H) : H <, G} < wCop(G) < inf {tw(G')+1 : G’ quasi-isometric to G}.

Does there exists f,g : N = N such that:
@ wCop(G) < f(sup{tw(H) : H < G})?
o inf{tw(G")+ 1 : G’ quasi-isometric to G} < g(wCop(G))?

If yes, can we choose f,g =idy?
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Proof that wCop(G) > @

A haven of order k in a graph G is a mapping B mapping each
X e <V<(i)> to some component B(X) of G — X, such that for every
<

X,Y € <V(G)
<k

X
a haven in G.

Theorem (Seymour, Thomas 1993)
For every finite graph G, we have bn(G) = tw(G) + 1.

), f(X) and B(Y) touch. bn(G) denotes the largest order of
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Proof that wCop(G) > @

Let H <, G, k := [%J and B be a haven of order tw(H) + 1 > 2k.
Winning strategy for the robber when playing against k cops.

Let 5., p denote the speed and reach of the k cops. Consider a D-fat model
(Vosev iy (Poecrary) of H in G, with D 1= 2(s, + p + 1),
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tw(H) < wCop(G).

Theorem (Georgakopoulos, Papasoglou 2023)
A graph G is quasi-isometric to a tree if and only if K3 < G.

Corollary (Esperet, Gahlawat, G. 2025 and Appenzeller, Klinge 2025)

A graph G is quasi-isometric to a tree if and only if wCop(G) = 1.
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For every finite graph H, if H < G, then

tw(H) < wCop(G).

Corollary (Esperet, Gahlawat, G. and Appenzeller, Klinge 2025)

A finitely generated group T' has wCop(I') = 1 if and only if it is virtually
free.

Question (Lee, Martinez-Pedroza, Rodriguez-Quinche 2023)

Do we have for every finitely generated group T", that wCop(I') € {1, 0} 7

Theorem (Lehner 2025)
For every finitely generated group T, we have wCop(T) € {1, c0}.
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sCop and hyperbolicity.

Theorem (Esperet, Gahlawat, G. and Appenzeller, Klinge 2025)

We have sCop(Z?) = .

A

v

v

v

v

v
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sCop and hyperbolicity.

G is 6-hyperbolic (6 > 0) if for every x, y,z € V(G), and every shortest

paths P;, P,, P; connecting respectively x to y, y to z and z to x, P, is at

distance at most 6 from |J,; P; in G.
G is hyperbolic if there exists § > 0 such that it is §-hyperbolic.

T )

P,

Py
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sCop and hyperbolicity.

Image source: Yann Ollivier. A primer to geometric group theory.

http://www.yann-ollivier.org/maths/primer.php
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sCop and hyperbolicity.

G is 6-hyperbolic (6 > 0) if for every x, y,z € V(G), and every shortest
paths P;, P,, P; connecting respectively x to y, y to z and z to x, P, is at

distance at most 6 from |J,; P; in G.
G is hyperbolic if there exists § > 0 such that it is §-hyperbolic.

Theorem (Lee, Martinez-Pedroza, Rodriguez-Quinche 2023)

Every hyperbolic graph G satisfies sCop(G) = 1.
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Theorem (Lee, Martinez-Pedroza, Rodriguez-Quinche 2023)
Every hyperbolic graph G satisfies sCop(G) = 1.

Theorem (Esperet, Gahlawat, G. and Appenzeller, Klinge 2025)
A graph G is hyperbolic if and only if sCop(G) = 1.
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|
sCop and hyperbolicity.

G is 6-hyperbolic (6 > 0) if for every x, y,z € V(G), and every shortest
paths P;, P,, P; connecting respectively x to y, y to z and z to x, P, is at
distance at most 6 from |J,; P; in G.

G is hyperbolic if there exists § > 0 such that it is §-hyperbolic.

Theorem (Chalopin, Chepoi, Nisse, Vaxés 2011, Chalopin, Chepoi,

Papasoglou, Pecatte 2014)
Let G be a finite graph.
e If G 5-hyperbolic, then it is (s, s,)-cop-win, for every s, s, such that
s, — 5. < 20.
e If G is (s,,s,)-cop-win for some s, s, with s, <s,, then it is
5-hyperbolic for some & = O(s,?).
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Theorem (Esperet, Gahlawat, G. and Appenzeller, Klinge 2025)

A graph G is hyperbolic if and only if sCop(G) = 1.
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sCop and hyperbolicity.

Theorem (Esperet, Gahlawat, G. and Appenzeller, Klinge 2025)

A graph G is hyperbolic if and only if sCop(G) = 1.

Proof of «.

Theorem (“Linear isoperimetric inequality”. Gromov 1987, Bowditch 1991)

If G is hyperbolic, then there exists D, K > 1 such that for every cycle C
such that |C| > K, no subpath of C of length at least D is a shortest path
inG.
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sCop and hyperbolicity.

Theorem (Esperet, Gahlawat, G. and Appenzeller, Klinge 2025)

A graph G is hyperbolic if and only if sCop(G) = 1.

Proof of «.

Theorem (“Linear isoperimetric inequality”. Gromov 1987, Bowditch 1991)

If G is hyperbolic, then there exists D, K > 1 such that for every cycle C
such that |C| > K, no subpath of C of length at least D is a shortest path
inG.

— Assume that G is not hyperbolic. Let s, be the speed of the cop, and
let s, :=100s,. Let p be the reach of the cop. The robber then chooses a
cycle C of length > 400ps, such that all subpaths of length 200ps, are
geodesics.

15/16



|
sCop and hyperbolicity.

15/16



|
sCop and hyperbolicity.

200ps.

15/16



|
sCop and hyperbolicity.

15/16



|
sCop and hyperbolicity.

> 10ps. + s¢

15/16



|
sCop and hyperbolicity.

15/16



|
sCop and hyperbolicity.

15/16



|
sCop and hyperbolicity.

P

15/16



|
sCop and hyperbolicity.

Case 1: £ > ps. + s, s, =100,

< 10ps. + sc
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sCop and hyperbolicity.

s, := 100s,.

pX 8y

Sp P)
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sCop and hyperbolicity.
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sCop and hyperbolicity.

Case 2: £ < ps. + s,

s, := 100s,.

< 10ps. + sc
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sCop and hyperbolicity.

Theorem (Esperet, Gahlawat, G. and Appenzeller, Klinge 2025)

A graph G is hyperbolic if and only if sCop(G) = 1.
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R
Conclusion

For graphs:

o sup{tw(H) : H < G} < wCop(G) < inf{tw(G") +1 :
G’ quasi-isometric to G}.

@ Graphs with wCop equal to 1 are exactly graphs quasi-isometric to
trees.

@ Graphs with sCop equals to 1 are exactly hyperbolic graphs.
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trees.

@ Graphs with sCop equals to 1 are exactly hyperbolic graphs.
For groups:

o A finitely generated group has wCop equal to 1 if and only if it has
finite wCop, if and only if it is virtually free.

@ Does every finitely presented group T satisfies sCop(I') € {1, c0}?
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Conclusion

For graphs:

o sup{tw(H) : H <., G} < wCop(G) < inf{tw(G") + 1
G’ quasi-isometric to G}.

@ Graphs with wCop equal to 1 are exactly graphs quasi-isometric to
trees.

@ Graphs with sCop equals to 1 are exactly hyperbolic graphs.
For groups:

o A finitely generated group has wCop equal to 1 if and only if it has
finite wCop, if and only if it is virtually free.

@ Does every finitely presented group T satisfies sCop(I') € {1, c0}?
Dziekuje bardzo.
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