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Introduced by Quilliot (1978) and Nowakowski and Winkler (1983).
Full information game on a fixed finite graph G. Initially, k cops
c1,… , ck choose positions v1,… , vk ∈ V (G). The robber r then chooses
a position v ∈ V (G).
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Cops and robber games in finite graphs.

Introduced by Quilliot (1978) and Nowakowski and Winkler (1983).
Full information game on a fixed finite graph G.
Cop number cop(G) of G := min number of cops required to win on G.
A collection of cops {c1,… , cm} guards a subgraph H of G if these cops
have a strategy in which, from some step, they can occupy vertices of H ,
and ensure that the robber will not be able to occupy a vertex of H
anymore.
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and ensure that the robber will not be able to occupy a vertex of H
anymore.

Lemma (Aigner, Fromme 1984)

Every shortest path in a finite graph is guardable by one cop.

Corollary (Aigner, Fromme 1984)

For every planar graph G, cop(G) ⩽ 3.
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Coarse cops and robber games.

How to define cops and robber game in infinite graph?

Pursuit-evasion variant in geodesic spaces (Mohar 2021).
Coarse variants introduced by Lee, Martínez-Pedroza, and
Rodríguez-Quinche (2023).
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Coarse cops and robber games.

G: fixed infinite graph.
Settings: k cops c1,… , ck with speed sc ⩾ 1 and reach � ⩾ 1. One robber
with speed sr ⩾ 1. B = B(v0, R): fixed ball of finite radius R ⩾ 1.
Step 0: c1,… , ck choose positions v1,… , vk ∈ V (G). Then the robber r
chooses a position v ∈ V (G) at distance > � from the cops.
Step i ⩾ 1: every cop can move using any path of length at most sc. If after
their moves, r is at distance at most � from a cop, the cops immediately
win. Otherwise, the robber can move using any path of lenth at most sr.
Goal of robber: enter in B infinitely many times without being captured.
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Weak (resp. Strong) cop number wCop(G) ∈ ℕ ∪ {∞} (resp.
sCop(G) ∈ ℕ ∪ {∞}) of G: infimum over the k ⩾ 1 such that k cops win
the weak (resp. strong) game.
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Quasi-isometries

Two (infinite) graphs G,H are quasi-isometric if there exist
f ∶ V (H)→ V (G) and constants A,B, C > 0 such that:

(1)

∀x, y ∈ V (H), 1
A
dH (x, y) − B ⩽ dG(f (x), f (y))) ⩽ AdH (x, y) + B,

(2) for every y ∈ V (G), there exists x ∈ V (H) such that dG(y, f (x)) ⩽ C.
If only (1) holds, then f is a quasi-isometric embedding.
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Quasi-isometry invariance

Theorem (Lee, Martínez-Pedroza, Rodríguez-Quinche 2023)

If G and H are quasi-isometric, then wCop(G) = wCop(H) and
sCop(G) = sCop(H).

Theorem (Esperet, Gahlawat, G.)

If f ∶ H → G is a quasi-isometric embedding, then wCop(H) ⩽ wCop(G)
and sCop(H) ⩽ sCop(G).

Proof idea: blackboard.
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Cop number of groups

(Γ, ⋅): group, S: finite set of generators. Cay(Γ, S) ∶ graph with vertex set
Γ and adjacencies {x, x ⋅ a} for every x ∈ Γ, a ∈ S.

(i , j)

(i + 1, j)(i − 1, j)

(i , j + 1)

(i , j − 1)

(Γ, ·) := (Z2,+)
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(i , j) + b
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(Γ, ⋅): group, S: finite set of generators. Cay(Γ, S) ∶ graph with vertex set
Γ and adjacencies {x, x ⋅ a} for every x ∈ Γ, a ∈ S.

(Γ, ·) := (Z2,+)
a := (1, 0), b := (0, 1)
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Cop number of groups

(Γ, ⋅): group, S: finite set of generators. Cay(Γ, S) ∶ graph with vertex set
Γ and adjacencies {x, x ⋅ a} for every x ∈ Γ, a ∈ S.
→ How are Cay(Γ, S) and Cay(Γ, S′) related for two different finite
generating sets S, S′?

a

Cay(Γ, S)

g g · a
a

Cay(Γ, S′)

a′1

a′2

a′3

g g · a
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Cop number of groups

(Γ, ⋅): group, S: finite set of generators. Cay(Γ, S) ∶ graph with vertex set
Γ and adjacencies {x, x ⋅ a} for every x ∈ Γ, a ∈ S.
→ How are Cay(Γ, S) and Cay(Γ, S′) related for two different finite
generating sets S, S′?

Proposition
Two Cayley graphs of a same group Γ are quasi-isometric.

→ One can define the weak/strong cop number of finitely generated
groups.
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Examples.
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Lemma
For every tree T , wCop(T ) = sCop(T ) = 1.
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For every tree T , wCop(T ) = sCop(T ) = 1. In particular, if G is
quasi-isometric to a tree, then wCop(G) = sCop(G) = 1.
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Examples.
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If a locally finite connected graph G is quasi-isometric to a graph of
treewidth at most t, then wCop(G) ⩽ t + 1.
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Examples.

Proposition
If a locally finite connected graph G is quasi-isometric to a graph of
treewidth at most t, then wCop(G) ⩽ t + 1.

The bound is tight.

. . .

2

2

i

i

. . .

Here: tw(G) = 2, while wCop(G) ⩾ 3.
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Examples.

Proposition
If a locally finite connected graph G is quasi-isometric to a graph of
treewidth at most t, then wCop(G) ⩽ t + 1.

3

. . .

. . .

. . . . . . . . . . . .

z

4

. . .

. . . . . . . . .

3
4

A graph G with tw(G) = 2 and sCop(G) = wCop(G) = ∞.
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wCop and asymptotic minors.

H : finite graph. A D-fat model of H in G is a family
((Vx)x∈V (H), (Pxy)xy∈E(H)) where:

for each x ∈ V (H), Vx induces a connected subgraph of G,
Pxy is a path with one endpoint in Vx and the other in Vy,
for every x ≠ y ∈ V (H), dG(Vx, Vy) ⩾ D,
every path Pxy is at distance ⩾ D in G from every other path Px′y′ ,
and from every Vz with z ∈ V (H) ⧵ {x, y}.

1

2

3

6

V1

V2

V3

V4

V5

V6

≥ D

≥ D

5

4
H
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for each x ∈ V (H), Vx induces a connected subgraph of G,
Pxy is a path with one endpoint in Vx and the other in Vy,
for every x ≠ y ∈ V (H), dG(Vx, Vy) ⩾ D,
every path Pxy is at distance ⩾ D in G from every other path Px′y′ ,
and from every Vz with z ∈ V (H) ⧵ {x, y}.

H is an asymptotic minor of G, denoted H ⪯∞ G, if there is a D-fat
model of H in G for every D ⩾ 1.

Remark (Georgakopoulos, Papasoglou 2023)

For every fixed graph H , and every two quasi-isometric graphs G,G′,

(H ⪯∞ G)⇔ (H ⪯∞ G′).
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wCop and asymptotic minors.

Theorem (Esperet, Gahlawat, G.)

For every finite graph H , if H ⪯∞ G, then

tw(H) ⩽ wCop(G).

The bound is tight.

. . .

2 i
. . .

Kt K
(2)
t K

(i)
t

→ G is such that Kt ⪯∞ G and wCop(G) = tw(Kt) = t − 1.
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Conjecture (Georgakopoulos, Papasoglou 2023)

A graph G is quasi-isometric to a graph of finite treewidth if and only if it
excludes a finite k × k grid as an asymptotic minor.

Excludes a finite grid as asymptotic minor
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Quasi-isometric to a graph of finite treewidth
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Conjecture (Georgakopoulos, Papasoglou 2023)

A graph G is quasi-isometric to a graph of finite treewidth if and only if it
excludes a finite k × k grid as an asymptotic minor.

Excludes a finite grid as asymptotic minor

=?

Quasi-isometric to a graph of finite treewidth

wCop(G) <∞

⊆

⊇
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wCop and asymptotic minors.

Theorem (Esperet, Gahlawat, G.)

For every finite graph H , if H ⪯∞ G, then

tw(H) ⩽ wCop(G).

sup{tw(H) ∶H ⪯∞G}⩽wCop(G)⩽ inf{tw(G′)+1 ∶G′ quasi-isometric to G}.

Question
Does there exists f, g ∶ ℕ → ℕ such that:

wCop(G) ⩽ f (sup{tw(H) ∶ H ⪯∞ G})?
inf{tw(G′) + 1 ∶ G′ quasi-isometric to G} ⩽ g(wCop(G))?

If yes, can we choose f, g = idN?
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Proof that wCop(G) > tw(H)+1
2

.

A haven of order k in a graph G is a mapping � mapping each

X ∈
(

V (G)
⩽ k

)

to some component �(X) of G −X, such that for every

X, Y ∈
(

V (G)
⩽ k

)

, �(X) and �(Y ) touch. bn(G) denotes the largest order of

a haven in G.

Theorem (Seymour, Thomas 1993)

For every finite graph G, we have bn(G) = tw(G) + 1.
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.

Let H ⪯∞ G, k ∶= ⌊

tw(H)+1
2

⌋ and � be a haven of order tw(H) + 1 ⩾ 2k.
Winning strategy for the robber when playing against k cops.
Let sc , � denote the speed and reach of the k cops. Consider a D-fat model
((Vx)x∈V (H), (Pe)e∈E(H)) of H in G, with D ∶= 2(sc + � + 1).
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wCop and asymptotic minors.
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tw(H) ⩽ wCop(G).

Corollary (Esperet, Gahlawat, G. and Appenzeller, Klinge 2025)

A finitely generated group Γ has wCop(Γ) = 1 if and only if it is virtually
free.

Question (Lee, Martínez-Pedroza, Rodríguez-Quinche 2023)

Do we have for every finitely generated group Γ, that wCop(Γ) ∈ {1,∞}?

Theorem (Lehner 2025)

For every finitely generated group Γ, we have wCop(Γ) ∈ {1,∞}.
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sCop and hyperbolicity.

Theorem (Esperet, Gahlawat, G. and Appenzeller, Klinge 2025)

We have sCop(ℤ2) = ∞.
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sCop and hyperbolicity.

G is �-hyperbolic (� ⩾ 0) if for every x, y, z ∈ V (G), and every shortest
paths P1, P2, P3 connecting respectively x to y, y to z and z to x, Pi is at
distance at most � from

⋃

j≠i Pj in G.
G is hyperbolic if there exists � ⩾ 0 such that it is �-hyperbolic.

x y

z

P1

P2
P3

δ
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sCop and hyperbolicity.

Image source: Yann Ollivier. A primer to geometric group theory.
http://www.yann-ollivier.org/maths/primer.php 14 / 16



sCop and hyperbolicity.

G is �-hyperbolic (� ⩾ 0) if for every x, y, z ∈ V (G), and every shortest
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paths P1, P2, P3 connecting respectively x to y, y to z and z to x, Pi is at
distance at most � from

⋃

j≠i Pj in G.
G is hyperbolic if there exists � ⩾ 0 such that it is �-hyperbolic.

Theorem (Chalopin, Chepoi, Nisse, Vaxès 2011, Chalopin, Chepoi,
Papasoglou, Pecatte 2014)

Let G be a finite graph.
If G �-hyperbolic, then it is (sc , sr)-cop-win, for every sc , sr such that
sr − sc ⩽ 2�.
If G is (sc , sr)-cop-win for some sc , sr with sc < sr, then it is
�-hyperbolic for some � = O(sr2).
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If G is hyperbolic, then there exists D,K ⩾ 1 such that for every cycle C
such that |C| ⩾ K, no subpath of C of length at least D is a shortest path
in G.

→ Assume that G is not hyperbolic. Let sc be the speed of the cop, and
let sr ∶= 100sc. Let � be the reach of the cop. The robber then chooses a
cycle C of length ⩾ 400�sc such that all subpaths of length 200�sc are
geodesics.
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Conclusion

For graphs:
sup{tw(H) ∶ H ⪯∞ G} ⩽ wCop(G) ⩽ inf{tw(G′) + 1 ∶
G′ quasi-isometric to G}.
Graphs with wCop equal to 1 are exactly graphs quasi-isometric to
trees.
Graphs with sCop equals to 1 are exactly hyperbolic graphs.

For groups:
A finitely generated group has wCop equal to 1 if and only if it has
finite wCop, if and only if it is virtually free.
Does every finitely presented group Γ satisfies sCop(Γ) ∈ {1,∞}?

Dziękuję bardzo.
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