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Covering problems

H: fixed host class of graphs (e.g. paths, trees, linear forests, star forests,
interval graphs...).
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Covering problems

H: fixed host class of graphs (e.g. paths, trees, linear forests, star forests,
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An edge-covering of the grid by two paths.
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Let G be a graph vertex/edge-coverable by a few graphs from H. What is
the structure of G? How close is it from a graph of H?
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Covering problems

H: fixed host class of graphs (e.g. paths, trees, linear forests, star forests,
interval graphs...).

H is an isometric subgraph of G if all shortest paths in H are also shortest
paths in G.

A vertex-covering of the grid by one path which is NOT isometric.
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The good news: coverings by isometric paths

Graphs coverable by a few isometric subpaths look like a path!

Theorem (Dumas, Foucaud, Perez, Todinca 2024)

Let G be a graph vertex-coverable by k shortest paths. Then
pw(G) = O(k - 3%). Moreover, if G is edge-coverable by k shortest paths,
then pw(G) = O(3%).
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Theorem (Baste, De Meyer, G., Objois, Picavet 2025)

Let G be a graph edge-coverable by k shortest paths. Then pw(G) = O(k*).
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The good news: coverings by isometric paths

Graphs coverable by a few isometric subpaths look like a path!

Theorem (Dumas, Foucaud, Perez, Todinca 2024)

Let G be a graph vertex-coverable by k shortest paths. Then
pw(G) = O(k - 3%). Moreover, if G is edge-coverable by k shortest paths,
then pw(G) = O(3%).

Polynomial bounds?

Theorem (Baste, De Meyer, G., Objois, Picavet 2025)

Let G be a graph edge-coverable by k shortest paths. Then pw(G) = O(k*).

Theorem (Baste, De Meyer, G., Objois, Picavet 2025)

Let G be a graph edge-coverable by 3 shortest paths. Then pw(G) < 3.
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Original proof of O(3%)

Theorem (Dumas, Foucaud, Perez, Todinca 2024)

Let G be a graph edge-coverable by k shortest paths. Then pw(G) = O(3%).

BFS layering
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Some proof ideas

Fix G edge-covered by shortest paths P, ..., P,.
Idea: reduce the problem to a subproblem centered around P,.
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Idea: reduce the problem to a subproblem centered around P,.

A path P of G is parallel to P, if there exists a shortest path Q in G
containing P as a subpath, whose extremities are on P,.
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containing P as a subpath, whose extremities are on P;.

Proposition
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From Theorem Main to the main theorem.

Theorem (Main)

For each i € {1,...,k}, there exists a set X; C V(G) of size O(k®) such

that every component of G — X; intersecting P, consists of O(k) paths all
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Theorem (Main)

For each i € {1,...,k}, there exists a set X; C V(G) of size O(k®) such

that every component of G — X; intersecting P, consists of O(k) paths all
parallel to P,
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From Theorem Main to the main theorem.

Theorem (Main)

For each i € {1,...,k}, there exists a set X; C V(G) of size O(k®) such

that every component of G — X; intersecting P, consists of O(k) paths all
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More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Theorem (Ball, Bell, Guzman, Hanson-Colvin, Schonsheck 2017)

Every graph vertex-coverable by k isometric subtrees has cop number at
most k.
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isometric subtrees has treewidth at most f(k)?
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More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Does there exists f : N — N such that every graph coverable by k
isometric subtrees has treewidth at most f(k)?

NO for the vertex-coverability question.
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Does there exists f : N — N such that every graph coverable by k
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Let G be a graph edge-coverable by 2 isometric subtrees. Then tw(G) < 2.
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More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Theorem (Bastide, Duron, Hodor, Liu, Nie 2025)

There exists graphs edge-coverable by 4 isometric trees and with arbitrary
large treewidth.
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Source: Baside, Duron, Hodor, Liu, Nie 2025
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More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Does there exists f : N — N such that every graph coverable by k
isometric subtrees has treewidth at most f(k)?

Theorem (Baste, De Meyer, G., Objois, Picavet 2025)
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There exists graphs edge-coverable by 4 isometric trees and with arbitrary
large treewidth.

k=37
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Thank you for your attention.

8/8



