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: fixed host class of graphs (e.g. paths, trees, linear forests, star forests,
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H is an isometric subgraph of G if all shortest paths in H are also shortest
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A vertex-covering of the grid by one path which is NOT isometric.
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The good news: coverings by isometric paths

Graphs coverable by a few isometric subpaths look like a path!

Theorem (Dumas, Foucaud, Perez, Todinca 2024)

Let G be a graph vertex-coverable by k shortest paths. Then
pw(G) = O(k ⋅ 3k). Moreover, if G is edge-coverable by k shortest paths,
then pw(G) = O(3k).

Polynomial bounds?

Theorem (Baste, De Meyer, G., Objois, Picavet 2025)

Let G be a graph edge-coverable by k shortest paths. Then pw(G) = O(k4).

Theorem (Baste, De Meyer, G., Objois, Picavet 2025)

Let G be a graph edge-coverable by 3 shortest paths. Then pw(G) ⩽ 3.
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Original proof of O(3k)

Theorem (Dumas, Foucaud, Perez, Todinca 2024)

Let G be a graph edge-coverable by k shortest paths. Then pw(G) = O(3k).

BFS layering

. . .

O(3k) O(3k)O(3k) O(3k)O(3k)
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Some proof ideas

Fix G edge-covered by shortest paths P1,… , Pk.
Idea: reduce the problem to a subproblem centered around P1.
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More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Theorem (Ball, Bell, Guzman, Hanson-Colvin, Schonsheck 2017)

Every graph vertex-coverable by k isometric subtrees has cop number at
most k.
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Structure of graphs coverable by a few isometric trees?

Question
Does there exists f ∶ ℕ → ℕ such that every graph coverable by k
isometric subtrees has treewidth at most f (k)?

NO for the vertex-coverability question.
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There exists graphs edge-coverable by 4 isometric trees and with arbitrary
large treewidth.
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k = 3?
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Thank you for your attention.
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