

Structure of graphs edge-coverable by a few isometric paths or trees.

Ugo Giocanti

Joint work with Julien Baste, Lucas De Meyer, Etienne Objois and
Timothé Picavet

Jagiellonian University

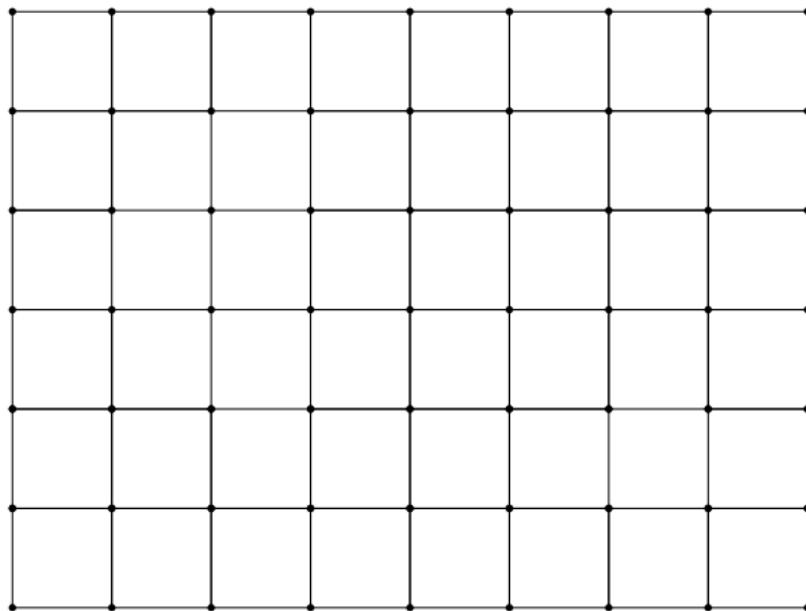
JGA 2025, Paris.

Covering problems

\mathcal{H} : fixed **host class** of graphs (e.g. paths, trees, linear forests, star forests, interval graphs...).

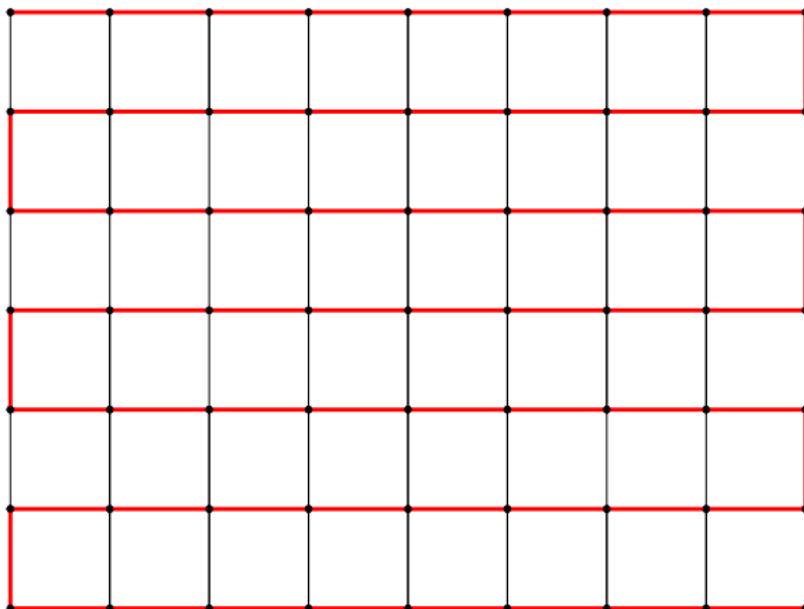
Covering problems

\mathcal{H} : fixed **host class** of graphs (e.g. paths, trees, linear forests, star forests, interval graphs...).



Covering problems

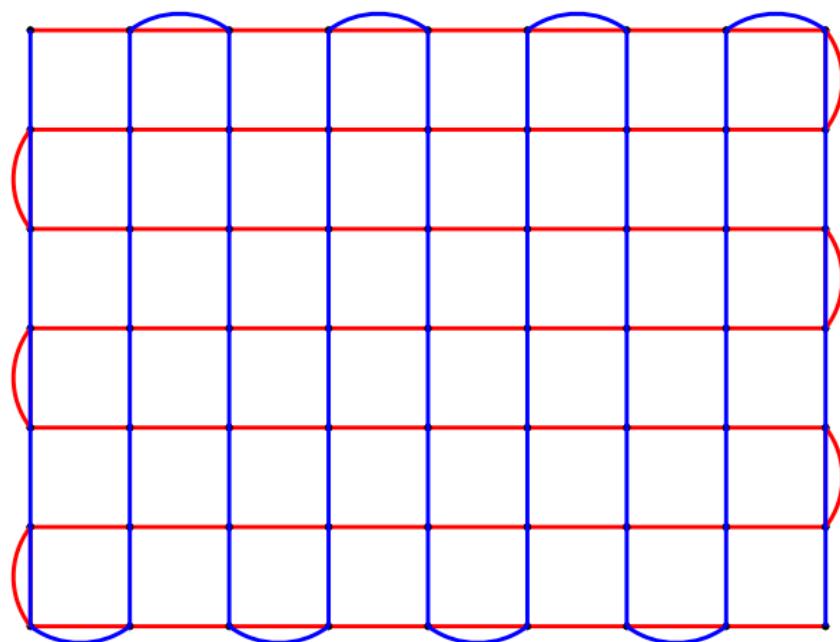
\mathcal{H} : fixed **host class** of graphs (e.g. paths, trees, linear forests, star forests, interval graphs...).



A **vertex**-covering of the grid by one path.

Covering problems

\mathcal{H} : fixed **host class** of graphs (e.g. paths, trees, linear forests, star forests, interval graphs...).



An **edge**-covering of the grid by two paths.

Covering problems

\mathcal{H} : fixed **host class** of graphs (e.g. paths, trees, linear forests, star forests, interval graphs...).

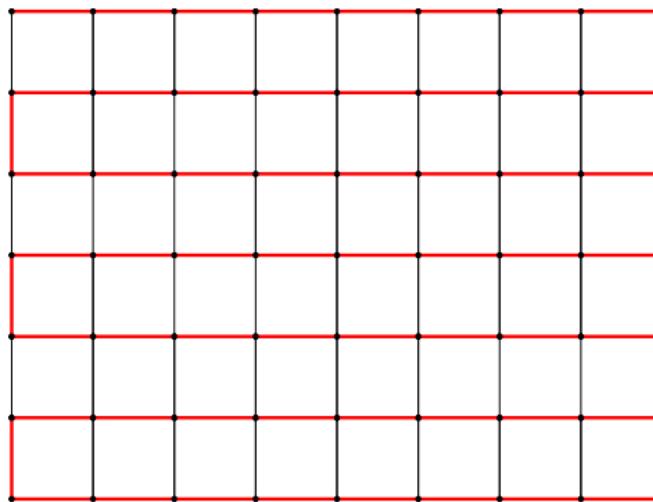
Question

Let G be a graph vertex/edge-coverable by a few graphs from \mathcal{H} . What is the structure of G ? How close is it from a graph of \mathcal{H} ?

Covering problems

\mathcal{H} : fixed host class of graphs (e.g. paths, trees, linear forests, star forests, interval graphs...).

H is an **isometric** subgraph of G if all shortest paths in H are also shortest paths in G .



A **vertex**-covering of the grid by one path which is **NOT** isometric.

Covering problems

\mathcal{H} : fixed **host class** of graphs (e.g. paths, trees, linear forests, star forests, interval graphs...).

Question

*Let G be a graph vertex/edge-coverable by a few **isometric** subgraphs from \mathcal{H} . What is the structure of G ? How close is it from a graph of \mathcal{H} ?*

The good news: coverings by isometric paths

Graphs coverable by a few **isometric** subpaths look like a path!

Theorem (Dumas, Foucaud, Perez, Todinca 2024)

Let G be a graph **vertex**-coverable by k shortest paths. Then $\text{pw}(G) = O(k \cdot 3^k)$. Moreover, if G is **edge**-coverable by k shortest paths, then $\text{pw}(G) = O(3^k)$.

The good news: coverings by isometric paths

Graphs coverable by a few **isometric** subpaths look like a path!

Theorem (Dumas, Foucaud, Perez, Todinca 2024)

Let G be a graph **vertex**-coverable by k shortest paths. Then $\text{pw}(G) = O(k \cdot 3^k)$. Moreover, if G is **edge**-coverable by k shortest paths, then $\text{pw}(G) = O(3^k)$.

Polynomial bounds?

The good news: coverings by isometric paths

Graphs coverable by a few **isometric** subpaths look like a path!

Theorem (Dumas, Foucaud, Perez, Todinca 2024)

Let G be a graph **vertex**-coverable by k shortest paths. Then $\text{pw}(G) = O(k \cdot 3^k)$. Moreover, if G is **edge**-coverable by k shortest paths, then $\text{pw}(G) = O(3^k)$.

Polynomial bounds?

Theorem (Baste, De Meyer, G., Objois, Picavet 2025)

Let G be a graph **edge**-coverable by k shortest paths. Then $\text{pw}(G) = O(k^4)$.

The good news: coverings by isometric paths

Graphs coverable by a few **isometric** subpaths look like a path!

Theorem (Dumas, Foucaud, Perez, Todinca 2024)

Let G be a graph **vertex**-coverable by k shortest paths. Then $\text{pw}(G) = O(k \cdot 3^k)$. Moreover, if G is **edge**-coverable by k shortest paths, then $\text{pw}(G) = O(3^k)$.

Polynomial bounds?

Theorem (Baste, De Meyer, G., Objois, Picavet 2025)

Let G be a graph **edge**-coverable by k shortest paths. Then $\text{pw}(G) = O(k^4)$.

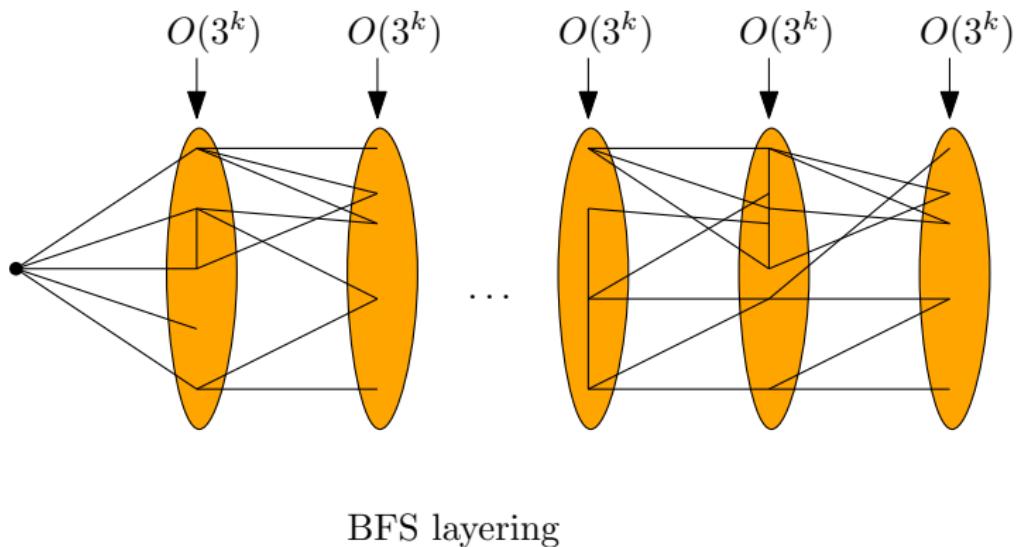
Theorem (Baste, De Meyer, G., Objois, Picavet 2025)

Let G be a graph **edge**-coverable by 3 shortest paths. Then $\text{pw}(G) \leq 3$.

Original proof of $O(3^k)$

Theorem (Dumas, Foucaud, Perez, Todinca 2024)

Let G be a graph **edge-coverable** by k shortest paths. Then $\text{pw}(G) = O(3^k)$.



Some proof ideas

Fix G edge-covered by shortest paths P_1, \dots, P_k .

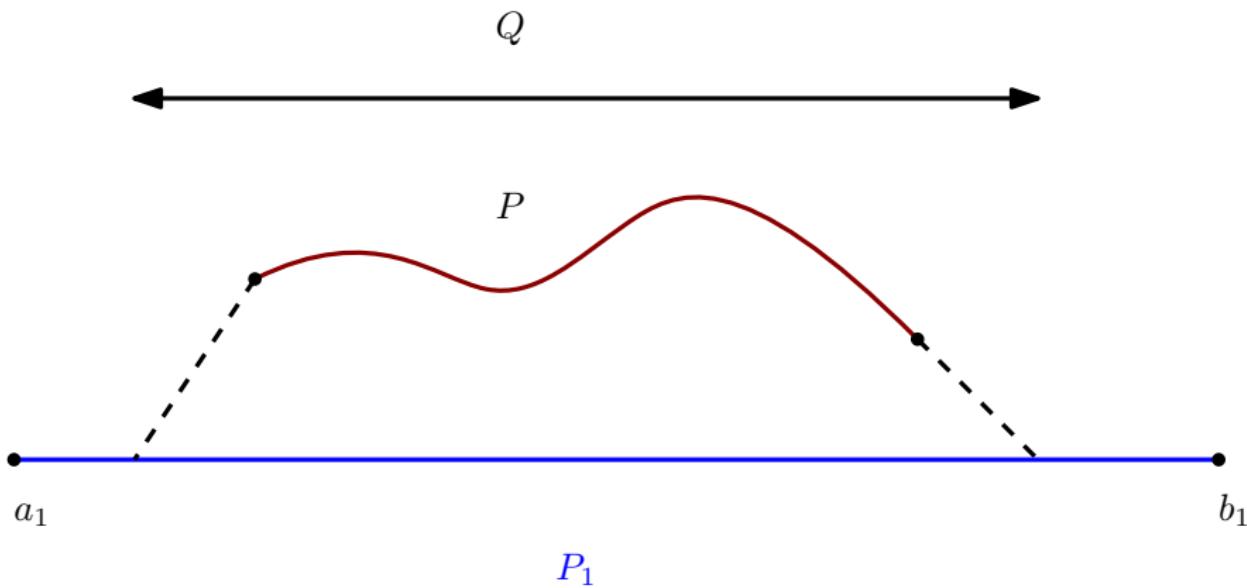
Idea: reduce the problem to a subproblem centered around P_1 .

Some proof ideas

Fix G edge-covered by shortest paths P_1, \dots, P_k .

Idea: reduce the problem to a subproblem centered around P_1 .

A path P of G is **parallel** to P_1 if there exists a shortest path Q in G containing P as a subpath, whose extremities are on P_1 .



Some proof ideas

Fix G edge-covered by shortest paths P_1, \dots, P_k .

Idea: reduce the problem to a subproblem centered around P_1 .

A path P of G is **parallel** to P_1 if there exists a shortest path Q in G containing P as a subpath, whose extremities are on P_1 .

Proposition

If G is coverable by ℓ paths all parallel to P_1 , then $\text{pw}(G) \leq \ell$.

Some proof ideas

Fix G edge-covered by shortest paths P_1, \dots, P_k .

Idea: reduce the problem to a subproblem centered around P_1 .

A path P of G is **parallel** to P_1 if there exists a shortest path Q in G containing P as a subpath, whose extremities are on P_1 .

Proposition

If G is coverable by ℓ paths all parallel to P_1 , then $\text{pw}(G) \leq \ell$.

Theorem (Main)

There exists a set $X \subseteq V(G)$ of size $O(k^3)$ such that every component of $G - X$ intersecting P_1 consists of $O(k)$ paths all parallel to P_1

From Theorem Main to the main theorem.

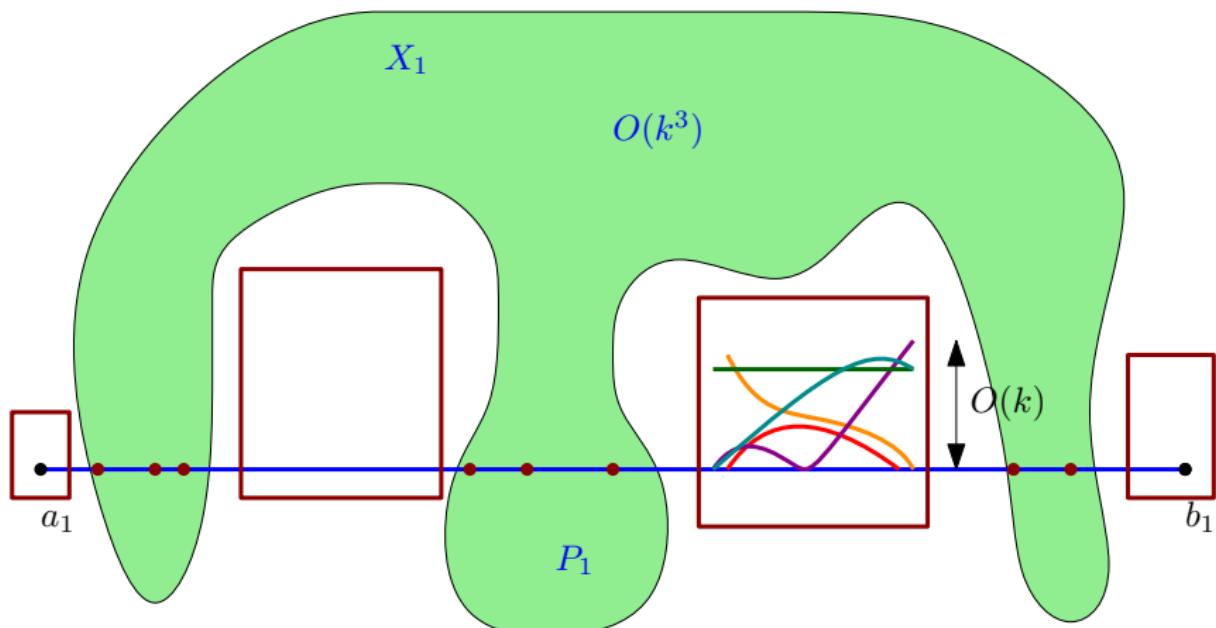
Theorem (Main)

There exists a set $X \subseteq V(G)$ of size $O(k^3)$ such that every component of $G - X$ intersecting P_1 consists of $O(k)$ paths all parallel to P_1

From Theorem Main to the main theorem.

Theorem (Main)

There exists a set $X \subseteq V(G)$ of size $O(k^3)$ such that every component of $G - X$ intersecting P_1 consists of $O(k)$ paths all parallel to P_1



From Theorem Main to the main theorem.

Theorem (Main)

For each $i \in \{1, \dots, k\}$, there exists a set $X_i \subseteq V(G)$ of size $O(k^3)$ such that every component of $G - X_i$ intersecting P_i consists of $O(k)$ paths all parallel to P_i

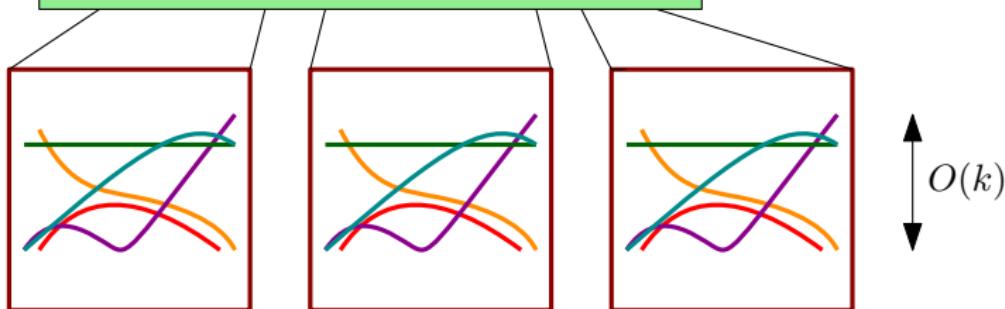
From Theorem Main to the main theorem.

Theorem (Main)

For each $i \in \{1, \dots, k\}$, there exists a set $X_i \subseteq V(G)$ of size $O(k^3)$ such that every component of $G - X_i$ intersecting P_i consists of $O(k)$ paths all parallel to P_i

$$X := \bigcup_{i=1}^k X_i$$

$$k \cdot O(k^3) = O(k^4)$$



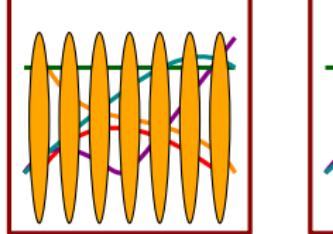
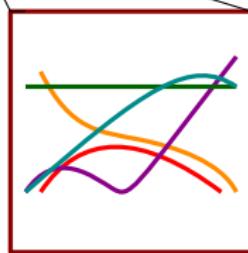
From Theorem Main to the main theorem.

Theorem (Main)

For each $i \in \{1, \dots, k\}$, there exists a set $X_i \subseteq V(G)$ of size $O(k^3)$ such that every component of $G - X_i$ intersecting P_i consists of $O(k)$ paths all parallel to P_i

$$X := \bigcup_{i=1}^k X_i$$

$$k \cdot O(k^3) = O(k^4)$$

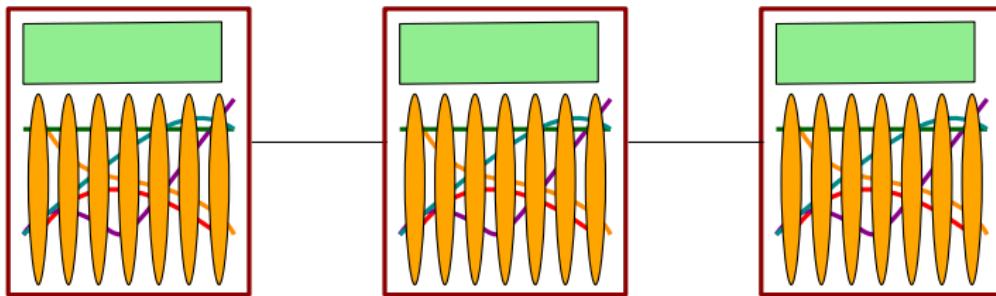


$O(k)$

From Theorem Main to the main theorem.

Theorem (Main)

For each $i \in \{1, \dots, k\}$, there exists a set $X_i \subseteq V(G)$ of size $O(k^3)$ such that every component of $G - X_i$ intersecting P_i consists of $O(k)$ paths all parallel to P_i



More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Theorem (Ball, Bell, Guzman, Hanson-Colvin, Schonsheck 2017)

Every graph vertex-coverable by k isometric subtrees has cop number at most k .

More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Question

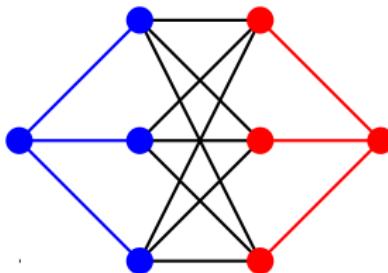
Does there exist $f : \mathbb{N} \rightarrow \mathbb{N}$ such that every graph coverable by k isometric subtrees has treewidth at most $f(k)$?

More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Question

Does there exist $f : \mathbb{N} \rightarrow \mathbb{N}$ such that every graph coverable by k isometric subtrees has treewidth at most $f(k)$?



NO for the vertex-coverability question.

More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Question

Does there exist $f : \mathbb{N} \rightarrow \mathbb{N}$ such that every graph coverable by k isometric subtrees has treewidth at most $f(k)$?

Theorem (Baste, De Meyer, G., Objois, Picavet 2025)

*Let G be a graph **edge**-coverable by 2 isometric subtrees. Then $\text{tw}(G) \leq 2$.*

More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Question

Does there exist $f : \mathbb{N} \rightarrow \mathbb{N}$ such that every graph coverable by k isometric subtrees has treewidth at most $f(k)$?

Theorem (Baste, De Meyer, G., Objois, Picavet 2025)

*Let G be a graph **edge**-coverable by 2 isometric subtrees. Then $\text{tw}(G) \leq 2$.*

Theorem (Bastide, Duron, Hodor, Liu, Nie 2025)

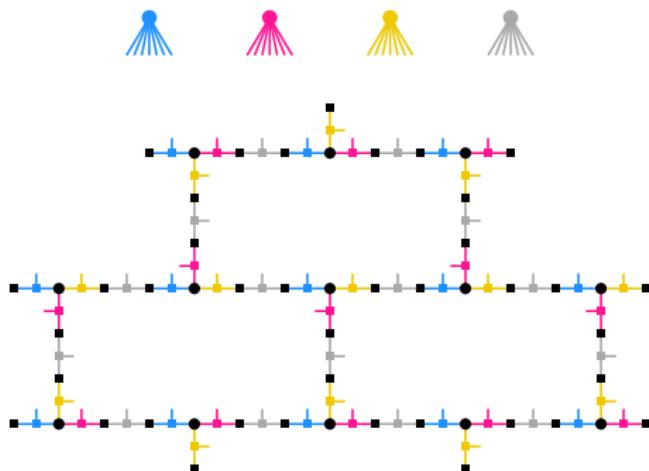
There exist graphs edge-coverable by 4 isometric trees and with arbitrary large treewidth.

More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Theorem (Bastide, Duron, Hodor, Liu, Nie 2025)

There exists graphs edge-coverable by 4 isometric trees and with arbitrary large treewidth.



Source: Baside, Duron, Hodor, Liu, Nie 2025

More general isometric covering problems? Trees?

Structure of graphs coverable by a few isometric trees?

Question

Does there exist $f : \mathbb{N} \rightarrow \mathbb{N}$ such that every graph coverable by k isometric subtrees has treewidth at most $f(k)$?

Theorem (Baste, De Meyer, G., Objois, Picavet 2025)

*Let G be a graph **edge**-coverable by 2 isometric subtrees. Then $\text{tw}(G) \leq 2$.*

Theorem (Bastide, Duron, Hodor, Liu, Nie 2025)

There exist graphs edge-coverable by 4 isometric trees and with arbitrary large treewidth.

$k = 3$?

Thank you for your attention.