# Structure of quasi-transitive graphs: planarity, minor exclusion and more.

Ugo Giocanti Based on joint works with Louis Esperet and Clément Legrand-Duchesne.

Uniwersytet Jagielloński, Kraków

Séminaire Darboux, Montpellier.

$$(i, j+1)$$

$$(i-1, j)$$

$$(i, j)$$

$$(i, j)$$

$$\bullet \qquad \bullet \qquad \bullet$$

$$(\Gamma, \cdot) := (\mathbb{Z}^2, +)$$





$$(\Gamma, \cdot) := (\mathbb{Z}^2, +)$$
  
 $a := (1, 0), b := (0, 1)$ 



$$(\Gamma, \cdot) := (\mathbb{Z}^2, +)$$
  
 $a := (1, 0), b := (0, 1)$   
 $c := (1, 1), d := (1, -1)$ 







+ 15 others

- [Maschke 1896] Full list of all finite planar Cayley graphs.
- [Wilkie 1966], [MacBeath 1967], [Zieschang, Volgt, Coldeway 1980]: characterization of locally finite planar Cayley graphs with a vertex-accumulation-free embedding.



- [Maschke 1896] Full list of all finite planar Cayley graphs.
- [Wilkie 1966], [MacBeath 1967], [Zieschang, Volgt, Coldeway 1980]: characterization of locally finite planar Cayley graphs with a vertex-accumulation-free embedding.



Image source: Yann Ollivier. A primer to geometric group theory.
http://www.yann-ollivier.org/maths/primer.php

- [Droms 2006] Decomposition method to construct all locally finite planar Cayley graphs.

- [Droms 2006] Decomposition method to construct all locally finite planar Cayley graphs.



- [Droms 2006] Decomposition method to construct all locally finite planar Cayley graphs.



G: (connected) graph, countable vertex set, bounded degree.









In this presentation: structural characterizations of classes of quasi-transitive graphs defined by geometric properties.



G: infinite graph.

Ray: 1-ended infinite path  $r = (x_1, x_2, x_3, ...)$  in a graph G.

G: infinite graph.

Ray: 1-ended infinite path  $r=(x_1,x_2,x_3,...)$  in a graph G.  $r\sim r'$  if for every finite  $X\subseteq_{fin}V(G)$ , the infinite components of r and r' are in the same connected component of  $G\setminus X$ .

G: infinite graph.

Ray: 1-ended infinite path  $r = (x_1, x_2, x_3, ...)$  in a graph G.

 $r \sim r'$  if for every finite  $X \subseteq_{fin} V(G)$ , the infinite components of r and r' are in the same connected component of  $G \setminus X$ .

ends of G: equivalence classes of rays.

G: infinite graph.

Ray: 1-ended infinite path  $r = (x_1, x_2, x_3, ...)$  in a graph G.

 $r \sim r'$  if for every finite  $X \subseteq_{fin} V(G)$ , the infinite components of r and r' are in the same connected component of  $G \setminus X$ .

ends of G: equivalence classes of rays.

#### Theorem (Hopf '43, Freudenthal, '44)

A Cayley graph has either 0, 1, 2 or infinitely many ends.

Ends  $\omega, \omega'$  are k-distinguishable if there is a set  $X \subseteq \Gamma$  of size at most k separating their rays.

G: infinite graph.

Ray: 1-ended infinite path  $r = (x_1, x_2, x_3, ...)$  in a graph G.

 $r \sim r'$  if for every finite  $X \subseteq_{fin} V(G)$ , the infinite components of r and r' are in the same connected component of  $G \setminus X$ .

ends of G: equivalence classes of rays.

#### Theorem (Hopf '43, Freudenthal, '44)

A Cayley graph has either 0, 1, 2 or infinitely many ends.

Ends  $\omega, \omega'$  are k-distinguishable if there is a set  $X \subseteq \Gamma$  of size at most k separating their rays.

*G* is accessible if there is some  $k \ge 0$  such that all its ends are k-distinguishable.

















Tree decomposition of G: pair  $(T, \mathcal{V})$  where T is a tree and  $\mathcal{V} = (V_t)_{t \in V(T)}$  is the collection of bags.

Tree decomposition of G: pair  $(T, \mathcal{V})$  where T is a tree and  $\mathcal{V} = (V_t)_{t \in V(T)}$  is the collection of bags.

 $(T,\mathcal{V})$  is canonical if  $\operatorname{Aut}(G)$  induces an action on T such that for every  $t\in V(T)$  and  $\gamma\in\operatorname{Aut}(G),\ V_{\gamma\cdot t}=\gamma\cdot V_t.$ 

Tree decomposition of G: pair  $(T, \mathcal{V})$  where T is a tree and  $\mathcal{V} = (V_t)_{t \in V(T)}$  is the collection of bags.

 $(T,\mathcal{V})$  is canonical if  $\operatorname{Aut}(G)$  induces an action on T such that for every  $t\in V(T)$  and  $\gamma\in\operatorname{Aut}(G),\ V_{\gamma\cdot t}=\gamma\cdot V_t.$ 

Canonical tree-decompositions  $\approx$  Bass-Serre splittings (Hamann, Lehner, Miraftab, Rühmann 2022).

### Tree-decompositions

Tree decomposition of G: pair  $(T, \mathcal{V})$  where T is a tree and  $\mathcal{V} = (V_t)_{t \in V(T)}$  is the collection of bags.

 $(T,\mathcal{V})$  is canonical if  $\operatorname{Aut}(G)$  induces an action on T such that for every  $t\in V(T)$  and  $\gamma\in\operatorname{Aut}(G),\ V_{\gamma\cdot t}=\gamma\cdot V_t.$ 

Canonical tree-decompositions  $\approx$  Bass-Serre splittings (Hamann, Lehner, Miraftab, Rühmann 2022).

### Theorem (Thomassen, Woess 1991, Carmesin, Hamann, Miraftab 2022)

A locally finite quasi-transitive graph is accessible if and only if it admits a (canonical) tree-decomposition of finite adhesion whose parts  $G[V_t]$  are either finite or one-ended.

## Planar quasi-transitive graphs



# Planar quasi-transitive graphs



### Planar quasi-transitive graphs

Analogous of Droms' decomposition in quasi-transitive graphs.

### Theorem (G. 2025, built on Hamann 2018)

Every planar locally finite 3-connected quasi-transitive graph G admits a canonical tree-decomposition whose edge-separations correspond to cycle-separations in the (unique) embedding of G, and where every part is a quasi- transitive subgraph of G admitting a vertex-accumulation-free planar embedding.

- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.



- vertex deletions;
- edge deletions;
- edge contractions.





- vertex deletions;
- edge deletions;
- edge contractions.





- vertex deletions;
- edge deletions;
- edge contractions.





- vertex deletions;
- edge deletions;
- edge contractions.





- vertex deletions;
- edge deletions;
- edge contractions.





• [Robertson, Seymour 2003] "If a finite graph G excludes some fixed minor H, then G has a tree-decomposition where each torso almost embeds in a surface of bounded genus."

- [Robertson, Seymour 2003] "If a finite graph G excludes some fixed minor H, then G has a tree-decomposition where each torso almost embeds in a surface of bounded genus."
- [Kříž, Thomas 1990] "Extends to infinite graphs excluding some finite minor."

- [Robertson, Seymour 2003] "If a finite graph G excludes some fixed minor H, then G has a tree-decomposition where each torso almost embeds in a surface of bounded genus."
- [Kříž, Thomas 1990] "Extends to infinite graphs excluding some finite minor."
- [Diestel, Thomas 1999] "A similar result for graphs excluding the countable clique  $K_{\infty}$  as a minor."

- [Robertson, Seymour 2003] "If a finite graph G excludes some fixed minor H, then G has a tree-decomposition where each torso almost embeds in a surface of bounded genus."
- [Kříž, Thomas 1990] "Extends to infinite graphs excluding some finite minor."
- [Diestel, Thomas 1999] "A similar result for graphs excluding the countable clique  $K_{\infty}$  as a minor."
- → None of these results are canonical.

#### *G* is quasi-4-connected if:

- G is 3-connected;
- ullet the only separations of order 3 in G are between a single vertex and the remainder of the graph.



#### *G* is quasi-4-connected if:

- *G* is 3-connected;
- ullet the only separations of order 3 in G are between a single vertex and the remainder of the graph.



#### G is quasi-4-connected if:

- *G* is 3-connected;
- ullet the only separations of order 3 in G are between a single vertex and the remainder of the graph.

#### Theorem (Thomassen 1992)

If G is locally finite, quasi-transitive, quasi-4-connected and excludes  $K_\infty$  as a minor, then G is either planar or it has finite treewidth.





#### *G* is quasi-4-connected if:

- G is 3-connected;
- the only separations of order 3 in *G* are between a single vertex and the remainder of the graph.

#### Theorem (Thomassen 1992)

If G is locally finite, quasi-transitive, quasi-4-connected and excludes  $K_\infty$  as a minor, then G is either planar or it has finite treewidth.

#### Corollary (Thomassen 1992)

If G is locally finite, quasi-4-connected and quasi-transitive, and if G has every finite graph as a minor, then G has  $K_{\infty}$  as a minor.

 $\rightarrow$  Question (Thomassen 1992): Can we drop the quasi-4-connectivity condition?

### Theorem (Esperet, G., Legrand-Duchesne 2023 (finite/planar))

Let G be a quasi-transitive locally finite graph excluding  $K_{\infty}$  as a minor. Then there is an integer k such that G admits a canonical tree-decomposition  $(T,\mathcal{V})$ , of adhesion at most k whose torsos are either finite or quasi-transitive 3-connected planar minors of G.



### Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding  $K_{\infty}$  as a minor. Then there is an integer k such that G admits a canonical tree-decomposition  $(T,\mathcal{V})$ , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.



### Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding  $K_{\infty}$  as a minor. Then there is an integer k such that G admits a canonical tree-decomposition  $(T,\mathcal{V})$ , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.

#### Corollary

If G is locally finite, quasi-transitive and has every finite graph as a minor, then it also has  $K_{\infty}$  as a minor.

### Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding  $K_{\infty}$  as a minor. Then there is an integer k such that G admits a canonical tree-decomposition  $(T,\mathcal{V})$ , of adhesion at most S whose torsos are quasi-transitive minors of S and have either treewidth at most S or are S-connected planar.

#### Corollary

If G is locally finite, quasi-transitive and has every finite graph as a minor, then it also has  $K_{\infty}$  as a minor.

Proof based on results and methods from [Grohe '16] and [Carmesin, Hamann, Miraftab '22].

### Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding  $K_{\infty}$  as a minor. Then there is an integer k such that G admits a canonical tree-decomposition  $(T,\mathcal{V})$ , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.

#### Theorem (MacManus 2023)

Let G be a quasi-transitive locally finite graph quasi-isometric to a planar graph. Then there G admits a canonical tree-decomposition  $(T,\mathcal{V})$ , of finite adhesion whose torsos are quasi-transitive finite or quasi-isometric to some complete Riemannian surface.

### Theorem (Esperet, G., 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar graph of bounded degree.

#### Theorem (Esperet, G., 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar graph of bounded degree.

#### Theorem (Hamann, 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar quasi-transitive graph of bounded degree.

#### Theorem (Esperet, G., 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar graph of bounded degree.

#### Theorem (Hamann, 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar quasi-transitive graph of bounded degree.

#### Theorem (MacManus, 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar Cayley graph of bounded degree.





- Geometric invariant
- Not a geometric invariant

*G* is k-planar  $(k \in \mathbb{N})$  if it has an drawing in  $\mathbb{R}^2$  such that each edge is crossed by at most k other edges.

G is k-planar  $(k \in \mathbb{N})$  if it has an drawing in  $\mathbb{R}^2$  such that each edge is crossed by at most k other edges.



G is k-planar  $(k \in \mathbb{N})$  if it has an drawing in  $\mathbb{R}^2$  such that each edge is crossed by at most k other edges.

#### Theorem (Esperet, G. 2024)

The property of being k-planar for some  $k \in \mathbb{N}$  is a geometric invariant for bounded degree graphs.

*G* is k-planar  $(k \in \mathbb{N})$  if it has an drawing in  $\mathbb{R}^2$  such that each edge is crossed by at most k other edges.

#### Theorem (Esperet, G. 2024)

The property of being k-planar for some  $k \in \mathbb{N}$  is a geometric invariant for bounded degree graphs.

#### Corollary

Every graph of bounded degree which is quasi-isometric to a planar graph is k-planar for some  $k \in \mathbb{N}$ .



Geometric invariant

Not a geometric invariant

*G* is k-planar  $(k \in \mathbb{N})$  if it has an drawing in  $\mathbb{R}^2$  such that each edge is crossed by at most k other edges.

#### Theorem (Esperet, G. 2024)

The property of being k-planar for some  $k \in \mathbb{N}$  is a geometric invariant for bounded degree graphs.

#### Corollary

Every graph of bounded degree which is quasi-isometric to a planar graph is k-planar for some  $k \in \mathbb{N}$ .

*G* is k-planar  $(k \in \mathbb{N})$  if it has an drawing in  $\mathbb{R}^2$  such that each edge is crossed by at most k other edges.

#### Theorem (Esperet, G. 2024)

The property of being k-planar for some  $k \in \mathbb{N}$  is a geometric invariant for bounded degree graphs.

#### Corollary

Every graph of bounded degree which is quasi-isometric to a planar graph is k-planar for some  $k \in \mathbb{N}$ .

### Conjecture (Georgakopoulos, Papasoglou 2023)

Let G be a bounded degree quasi-transitive graph. Then G is quasi-isometric to a planar graph if and only if it is k-planar for some  $k \in \mathbb{N}$ .





Thank you for your attention.