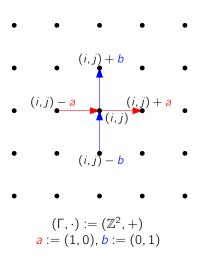
Structure of quasi-transitive graphs: planarity, minor exclusion and more.

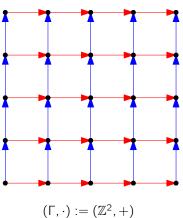
Ugo Giocanti Based on joint works with Louis Esperet and Clément Legrand-Duchesne.

Uniwersytet Jagielloński, Kraków

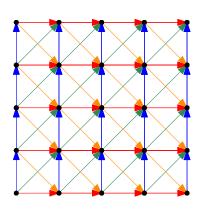
Séminaire Darboux, Montpellier.

$$(i, j+1)$$

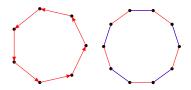

$$(i-1, j)$$

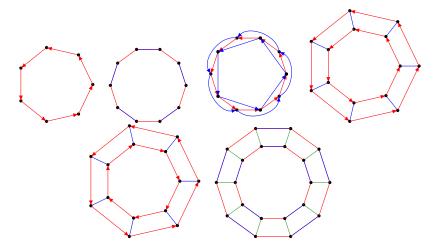

$$(i, j)$$

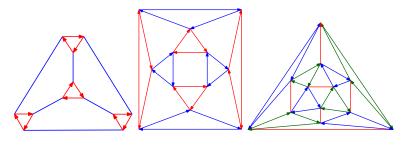
$$(i, j)$$


$$\bullet \qquad \bullet \qquad \bullet$$

$$(\Gamma, \cdot) := (\mathbb{Z}^2, +)$$



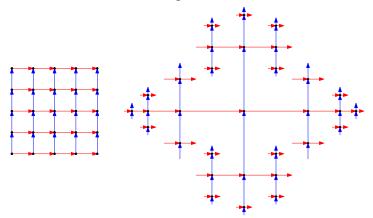



$$(\Gamma, \cdot) := (\mathbb{Z}^2, +)$$

 $a := (1, 0), b := (0, 1)$

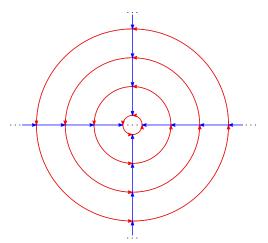
$$(\Gamma, \cdot) := (\mathbb{Z}^2, +)$$

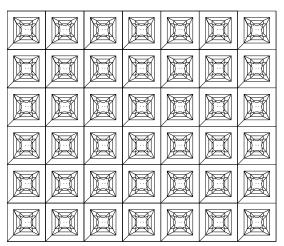
 $a := (1, 0), b := (0, 1)$
 $c := (1, 1), d := (1, -1)$



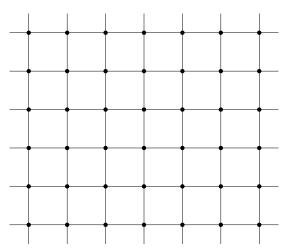
+ 15 others

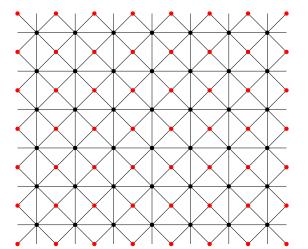
- [Maschke 1896] Full list of all finite planar Cayley graphs.
- [Wilkie 1966], [MacBeath 1967], [Zieschang, Volgt, Coldeway 1980]: characterization of locally finite planar Cayley graphs with a vertex-accumulation-free embedding.

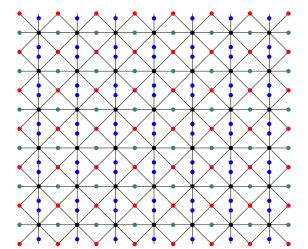

- [Maschke 1896] Full list of all finite planar Cayley graphs.
- [Wilkie 1966], [MacBeath 1967], [Zieschang, Volgt, Coldeway 1980]: characterization of locally finite planar Cayley graphs with a vertex-accumulation-free embedding.

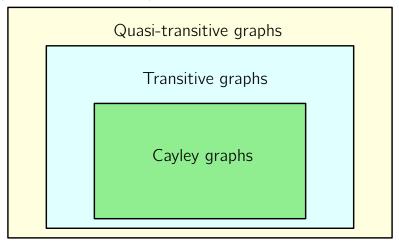

Image source: Yann Ollivier. A primer to geometric group theory.
http://www.yann-ollivier.org/maths/primer.php

- [Droms 2006] Decomposition method to construct all locally finite planar Cayley graphs.

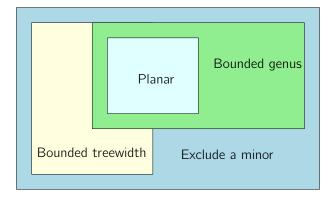

- [Droms 2006] Decomposition method to construct all locally finite planar Cayley graphs.




- [Droms 2006] Decomposition method to construct all locally finite planar Cayley graphs.



G: (connected) graph, countable vertex set, bounded degree.



In this presentation: structural characterizations of classes of quasi-transitive graphs defined by geometric properties.

G: infinite graph.

Ray: 1-ended infinite path $r = (x_1, x_2, x_3, ...)$ in a graph G.

G: infinite graph.

Ray: 1-ended infinite path $r=(x_1,x_2,x_3,...)$ in a graph G. $r\sim r'$ if for every finite $X\subseteq_{fin}V(G)$, the infinite components of r and r' are in the same connected component of $G\setminus X$.

G: infinite graph.

Ray: 1-ended infinite path $r = (x_1, x_2, x_3, ...)$ in a graph G.

 $r \sim r'$ if for every finite $X \subseteq_{fin} V(G)$, the infinite components of r and r' are in the same connected component of $G \setminus X$.

ends of G: equivalence classes of rays.

G: infinite graph.

Ray: 1-ended infinite path $r = (x_1, x_2, x_3, ...)$ in a graph G.

 $r \sim r'$ if for every finite $X \subseteq_{fin} V(G)$, the infinite components of r and r' are in the same connected component of $G \setminus X$.

ends of G: equivalence classes of rays.

Theorem (Hopf '43, Freudenthal, '44)

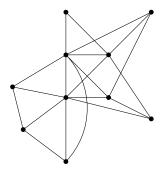
A Cayley graph has either 0, 1, 2 or infinitely many ends.

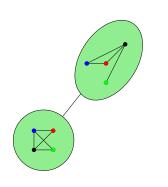
Ends ω, ω' are k-distinguishable if there is a set $X \subseteq \Gamma$ of size at most k separating their rays.

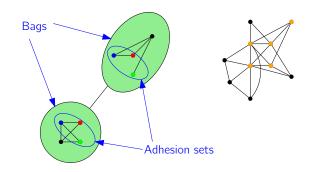
G: infinite graph.

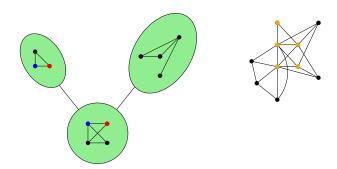
Ray: 1-ended infinite path $r = (x_1, x_2, x_3, ...)$ in a graph G.

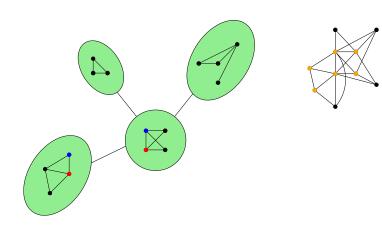
 $r \sim r'$ if for every finite $X \subseteq_{fin} V(G)$, the infinite components of r and r' are in the same connected component of $G \setminus X$.

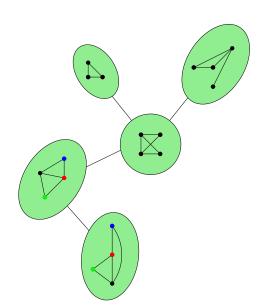

ends of G: equivalence classes of rays.

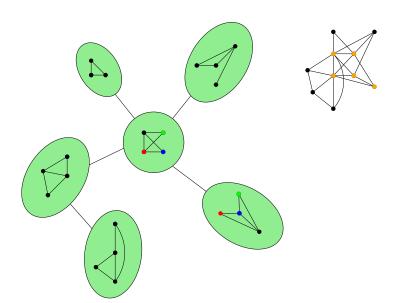

Theorem (Hopf '43, Freudenthal, '44)


A Cayley graph has either 0, 1, 2 or infinitely many ends.


Ends ω, ω' are k-distinguishable if there is a set $X \subseteq \Gamma$ of size at most k separating their rays.


G is accessible if there is some $k \ge 0$ such that all its ends are k-distinguishable.





Tree decomposition of G: pair (T, \mathcal{V}) where T is a tree and $\mathcal{V} = (V_t)_{t \in V(T)}$ is the collection of bags.

Tree decomposition of G: pair (T, \mathcal{V}) where T is a tree and $\mathcal{V} = (V_t)_{t \in V(T)}$ is the collection of bags.

 (T,\mathcal{V}) is canonical if $\operatorname{Aut}(G)$ induces an action on T such that for every $t\in V(T)$ and $\gamma\in\operatorname{Aut}(G),\ V_{\gamma\cdot t}=\gamma\cdot V_t.$

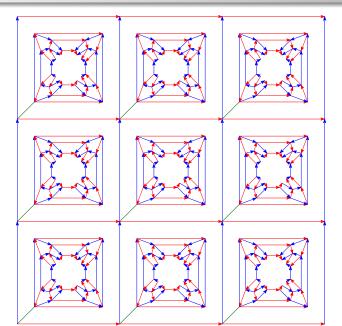
Tree decomposition of G: pair (T, \mathcal{V}) where T is a tree and $\mathcal{V} = (V_t)_{t \in V(T)}$ is the collection of bags.

 (T,\mathcal{V}) is canonical if $\operatorname{Aut}(G)$ induces an action on T such that for every $t\in V(T)$ and $\gamma\in\operatorname{Aut}(G),\ V_{\gamma\cdot t}=\gamma\cdot V_t.$

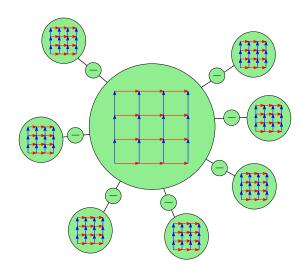
Canonical tree-decompositions \approx Bass-Serre splittings (Hamann, Lehner, Miraftab, Rühmann 2022).

Tree-decompositions

Tree decomposition of G: pair (T, \mathcal{V}) where T is a tree and $\mathcal{V} = (V_t)_{t \in V(T)}$ is the collection of bags.


 (T,\mathcal{V}) is canonical if $\operatorname{Aut}(G)$ induces an action on T such that for every $t\in V(T)$ and $\gamma\in\operatorname{Aut}(G),\ V_{\gamma\cdot t}=\gamma\cdot V_t.$

Canonical tree-decompositions \approx Bass-Serre splittings (Hamann, Lehner, Miraftab, Rühmann 2022).

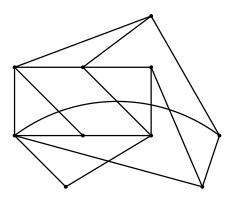

Theorem (Thomassen, Woess 1991, Carmesin, Hamann, Miraftab 2022)

A locally finite quasi-transitive graph is accessible if and only if it admits a (canonical) tree-decomposition of finite adhesion whose parts $G[V_t]$ are either finite or one-ended.

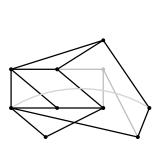
Planar quasi-transitive graphs

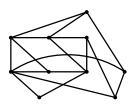
Planar quasi-transitive graphs

Planar quasi-transitive graphs

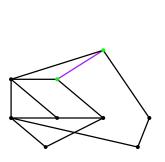

Analogous of Droms' decomposition in quasi-transitive graphs.

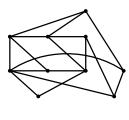
Theorem (G. 2025, built on Hamann 2018)

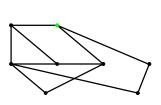

Every planar locally finite 3-connected quasi-transitive graph G admits a canonical tree-decomposition whose edge-separations correspond to cycle-separations in the (unique) embedding of G, and where every part is a quasi- transitive subgraph of G admitting a vertex-accumulation-free planar embedding.

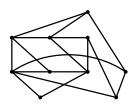

- vertex deletions;
- edge deletions;
- edge contractions.

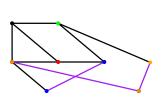
- vertex deletions;
- edge deletions;
- edge contractions.

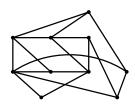


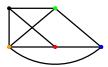

- vertex deletions;
- edge deletions;
- edge contractions.

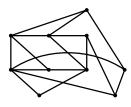



- vertex deletions;
- edge deletions;
- edge contractions.



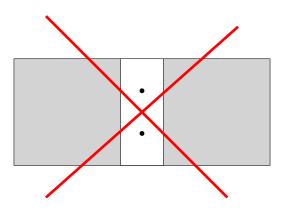

- vertex deletions;
- edge deletions;
- edge contractions.




- vertex deletions;
- edge deletions;
- edge contractions.

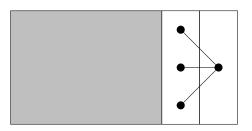
- vertex deletions;
- edge deletions;
- edge contractions.

• [Robertson, Seymour 2003] "If a finite graph G excludes some fixed minor H, then G has a tree-decomposition where each torso almost embeds in a surface of bounded genus."


- [Robertson, Seymour 2003] "If a finite graph G excludes some fixed minor H, then G has a tree-decomposition where each torso almost embeds in a surface of bounded genus."
- [Kříž, Thomas 1990] "Extends to infinite graphs excluding some finite minor."

- [Robertson, Seymour 2003] "If a finite graph G excludes some fixed minor H, then G has a tree-decomposition where each torso almost embeds in a surface of bounded genus."
- [Kříž, Thomas 1990] "Extends to infinite graphs excluding some finite minor."
- [Diestel, Thomas 1999] "A similar result for graphs excluding the countable clique K_{∞} as a minor."

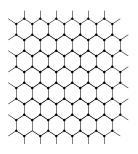
- [Robertson, Seymour 2003] "If a finite graph G excludes some fixed minor H, then G has a tree-decomposition where each torso almost embeds in a surface of bounded genus."
- [Kříž, Thomas 1990] "Extends to infinite graphs excluding some finite minor."
- [Diestel, Thomas 1999] "A similar result for graphs excluding the countable clique K_{∞} as a minor."
- → None of these results are canonical.

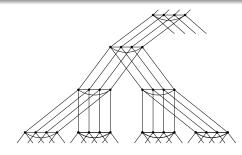

G is quasi-4-connected if:

- G is 3-connected;
- ullet the only separations of order 3 in G are between a single vertex and the remainder of the graph.

G is quasi-4-connected if:

- *G* is 3-connected;
- ullet the only separations of order 3 in G are between a single vertex and the remainder of the graph.




G is quasi-4-connected if:

- *G* is 3-connected;
- ullet the only separations of order 3 in G are between a single vertex and the remainder of the graph.

Theorem (Thomassen 1992)

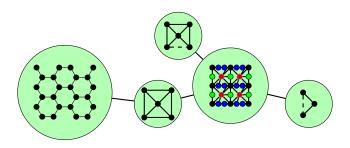
If G is locally finite, quasi-transitive, quasi-4-connected and excludes K_∞ as a minor, then G is either planar or it has finite treewidth.

G is quasi-4-connected if:

- G is 3-connected;
- the only separations of order 3 in *G* are between a single vertex and the remainder of the graph.

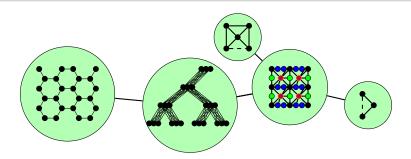
Theorem (Thomassen 1992)

If G is locally finite, quasi-transitive, quasi-4-connected and excludes K_∞ as a minor, then G is either planar or it has finite treewidth.


Corollary (Thomassen 1992)

If G is locally finite, quasi-4-connected and quasi-transitive, and if G has every finite graph as a minor, then G has K_{∞} as a minor.

 \rightarrow Question (Thomassen 1992): Can we drop the quasi-4-connectivity condition?


Theorem (Esperet, G., Legrand-Duchesne 2023 (finite/planar))

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T,\mathcal{V}) , of adhesion at most k whose torsos are either finite or quasi-transitive 3-connected planar minors of G.

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T,\mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T,\mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.

Corollary

If G is locally finite, quasi-transitive and has every finite graph as a minor, then it also has K_{∞} as a minor.

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T,\mathcal{V}) , of adhesion at most S whose torsos are quasi-transitive minors of S and have either treewidth at most S or are S-connected planar.

Corollary

If G is locally finite, quasi-transitive and has every finite graph as a minor, then it also has K_{∞} as a minor.

Proof based on results and methods from [Grohe '16] and [Carmesin, Hamann, Miraftab '22].

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T,\mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.

Theorem (MacManus 2023)

Let G be a quasi-transitive locally finite graph quasi-isometric to a planar graph. Then there G admits a canonical tree-decomposition (T,\mathcal{V}) , of finite adhesion whose torsos are quasi-transitive finite or quasi-isometric to some complete Riemannian surface.

Theorem (Esperet, G., 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar graph of bounded degree.

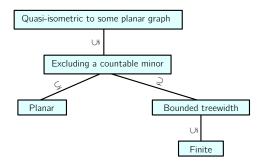
Theorem (Esperet, G., 2024)

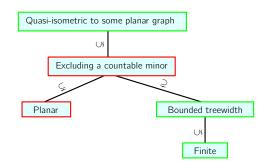
Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar graph of bounded degree.

Theorem (Hamann, 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar quasi-transitive graph of bounded degree.

Theorem (Esperet, G., 2024)

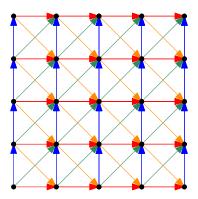

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar graph of bounded degree.


Theorem (Hamann, 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar quasi-transitive graph of bounded degree.

Theorem (MacManus, 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar Cayley graph of bounded degree.



- Geometric invariant
- Not a geometric invariant

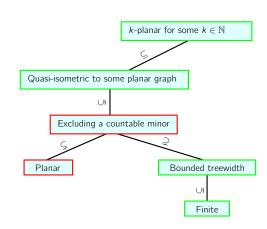
G is k-planar $(k \in \mathbb{N})$ if it has an drawing in \mathbb{R}^2 such that each edge is crossed by at most k other edges.

G is k-planar $(k \in \mathbb{N})$ if it has an drawing in \mathbb{R}^2 such that each edge is crossed by at most k other edges.

G is k-planar $(k \in \mathbb{N})$ if it has an drawing in \mathbb{R}^2 such that each edge is crossed by at most k other edges.

Theorem (Esperet, G. 2024)

The property of being k-planar for some $k \in \mathbb{N}$ is a geometric invariant for bounded degree graphs.


G is k-planar $(k \in \mathbb{N})$ if it has an drawing in \mathbb{R}^2 such that each edge is crossed by at most k other edges.

Theorem (Esperet, G. 2024)

The property of being k-planar for some $k \in \mathbb{N}$ is a geometric invariant for bounded degree graphs.

Corollary

Every graph of bounded degree which is quasi-isometric to a planar graph is k-planar for some $k \in \mathbb{N}$.

Geometric invariant

Not a geometric invariant

G is k-planar $(k \in \mathbb{N})$ if it has an drawing in \mathbb{R}^2 such that each edge is crossed by at most k other edges.

Theorem (Esperet, G. 2024)

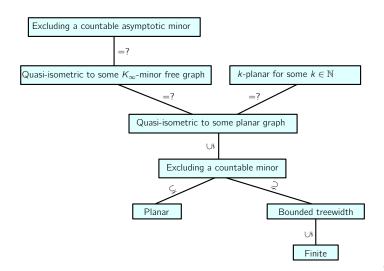
The property of being k-planar for some $k \in \mathbb{N}$ is a geometric invariant for bounded degree graphs.

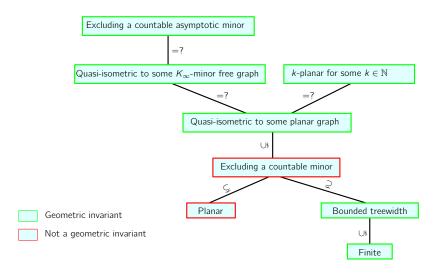
Corollary

Every graph of bounded degree which is quasi-isometric to a planar graph is k-planar for some $k \in \mathbb{N}$.

G is k-planar $(k \in \mathbb{N})$ if it has an drawing in \mathbb{R}^2 such that each edge is crossed by at most k other edges.

Theorem (Esperet, G. 2024)


The property of being k-planar for some $k \in \mathbb{N}$ is a geometric invariant for bounded degree graphs.


Corollary

Every graph of bounded degree which is quasi-isometric to a planar graph is k-planar for some $k \in \mathbb{N}$.

Conjecture (Georgakopoulos, Papasoglou 2023)

Let G be a bounded degree quasi-transitive graph. Then G is quasi-isometric to a planar graph if and only if it is k-planar for some $k \in \mathbb{N}$.

Thank you for your attention.