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Cayley graphs

(Γ, ⋅): group, S: finite set of generators. Cay(Γ, S) ∶ graph with vertex set
Γ and adjacencies {x, x ⋅ a} for every x ∈ Γ, a ∈ S.

(i , j)

(i + 1, j)(i − 1, j)

(i , j + 1)

(i , j − 1)

(Γ, ·) := (Z2,+)

2 / 18



Cayley graphs

(Γ, ⋅): group, S: finite set of generators. Cay(Γ, S) ∶ graph with vertex set
Γ and adjacencies {x, x ⋅ a} for every x ∈ Γ, a ∈ S.

(i , j)

(i , j) + a(i , j)− a

(i , j) + b

(i , j)− b

(Γ, ·) := (Z2,+)
a := (1, 0), b := (0, 1)

2 / 18



Cayley graphs

(Γ, ⋅): group, S: finite set of generators. Cay(Γ, S) ∶ graph with vertex set
Γ and adjacencies {x, x ⋅ a} for every x ∈ Γ, a ∈ S.

(Γ, ·) := (Z2,+)
a := (1, 0), b := (0, 1)

2 / 18



Cayley graphs

(Γ, ⋅): group, S: finite set of generators. Cay(Γ, S) ∶ graph with vertex set
Γ and adjacencies {x, x ⋅ a} for every x ∈ Γ, a ∈ S.

(Γ, ·) := (Z2,+)
a := (1, 0), b := (0, 1)
c := (1, 1), d := (1,−1) 2 / 18



Planar groups

- [Maschke 1896] Full list of all finite planar Cayley graphs.
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- [Wilkie 1966], [MacBeath 1967], [Zieschang, Volgt, Coldeway 1980]:
characterization of locally finite planar Cayley graphs with a
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- [Maschke 1896] Full list of all finite planar Cayley graphs.
- [Wilkie 1966], [MacBeath 1967], [Zieschang, Volgt, Coldeway 1980]:
characterization of locally finite planar Cayley graphs with a
vertex-accumulation-free embedding.

Image source: Yann Ollivier. A primer to geometric group theory.
http://www.yann-ollivier.org/maths/primer.php
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Planar groups

- [Droms 2006] Decomposition method to construct all locally finite planar
Cayley graphs.
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Quasi-transitive graphs

G: (connected) graph, countable vertex set, bounded degree.
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Quasi-transitive graphs

G: (connected) graph, countable vertex set, bounded degree.
G transitive (resp. quasi-transitive) if the action of Aut(G) on V (G) has
one (resp. a finite number of) orbit.

Cayley graphs

Transitive graphs

Quasi-transitive graphs
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In this presentation: structural characterizations of classes of
quasi-transitive graphs defined by geometric properties.

Planar
Bounded genus

Bounded treewidth Exclude a minor
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Ends, accessibility

G: infinite graph.
Ray: 1-ended infinite path r = (x1, x2, x3,…) in a graph G.

r ∼ r′ if for every finite X ⊆fin V (G), the infinite components of r and r′
are in the same connected component of G ⧵X.
ends of G: equivalence classes of rays.

Theorem (Hopf ’43, Freudenthal, ’44)

A Cayley graph has either 0, 1, 2 or infinitely many ends.

Ends !,!′ are k-distinguishable if there is a set X ⊆ Γ of size at most k
separating their rays.
G is accessible if there is some k ⩾ 0 such that all its ends are
k-distinguishable.
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Tree-decompositions

Bags

Adhesion sets
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is the collection of bags.
(T ,) is canonical if Aut(G) induces an action on T such that for every
t ∈ V (T ) and 
 ∈ Aut(G), V
⋅t = 
 ⋅ Vt.
Canonical tree-decompositions ≈ Bass-Serre splittings (Hamann, Lehner,
Miraftab, Rühmann 2022).

Theorem (Thomassen, Woess 1991, Carmesin, Hamann, Miraftab 2022)

A locally finite quasi-transitive graph is accessible if and only if it admits a
(canonical) tree-decomposition of finite adhesion whose parts G[Vt] are
either finite or one-ended.
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Planar quasi-transitive graphs
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Planar quasi-transitive graphs

Analogous of Droms’ decomposition in quasi-transitive graphs.

Theorem (G. 2025, built on Hamann 2018)

Every planar locally finite 3-connected quasi-transitive graph G admits a
canonical tree-decomposition whose edge-separations correspond to
cycle-separations in the (unique) embedding of G, and where every part is
a quasi- transitive subgraph of G admitting a vertex-accumulation-free
planar embedding.
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Minors

A graph H is a minor of G if H can be obtained from G after performing
the following operations:

vertex deletions;
edge deletions;
edge contractions.
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Graph Minor Structure Theorem

[Robertson, Seymour 2003] “If a finite graph G excludes some fixed
minor H , then G has a tree-decomposition where each torso almost
embeds in a surface of bounded genus.”

[Kříž, Thomas 1990] “Extends to infinite graphs excluding some finite
minor.”
[Diestel, Thomas 1999] “A similar result for graphs excluding the
countable clique K∞ as a minor.”

→ None of these results are canonical.
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Minors in quasi-4-connected graphs

G is quasi-4-connected if:
G is 3-connected;
the only separations of order 3 in G are between a single vertex and
the remainder of the graph.
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G is 3-connected;
the only separations of order 3 in G are between a single vertex and
the remainder of the graph.

Theorem (Thomassen 1992)

If G is locally finite, quasi-transitive, quasi-4-connected and excludes K∞ as
a minor, then G is either planar or it has finite treewidth.

Corollary (Thomassen 1992)

If G is locally finite, quasi-4-connected and quasi-transitive, and if G has
every finite graph as a minor, then G has K∞ as a minor.

→ Question (Thomassen 1992): Can we drop the quasi-4-connectivity
condition?
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Minor excluded quasi-transitive graphs

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite/planar))

Let G be a quasi-transitive locally finite graph excluding K∞ as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T ,), of adhesion at most k whose torsos are either
finite or quasi-transitive 3-connected planar minors of G.
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Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding K∞ as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T ,), of adhesion at most 3 whose torsos are
quasi-transitive minors of G and have either treewidth at most k or are
3-connected planar.

Corollary
If G is locally finite, quasi-transitive and has every finite graph as a minor,
then it also has K∞ as a minor.

Proof based on results and methods from [Grohe ’16] and [Carmesin,
Hamann, Miraftab ’22].
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Minor excluded quasi-transitive graphs

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding K∞ as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T ,), of adhesion at most 3 whose torsos are
quasi-transitive minors of G and have either treewidth at most k or are
3-connected planar.

Theorem (MacManus 2023)

Let G be a quasi-transitive locally finite graph quasi-isometric to a planar
graph. Then there G admits a canonical tree-decomposition (T ,), of
finite adhesion whose torsos are quasi-transitive finite or quasi-isometric to
some complete Riemannian surface.
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Minors and quasi-isometries to planar graphs

Theorem (Esperet, G., 2024)

Every bounded degree quasi-transitive graph excluding a minor is
quasi-isometric to some planar graph of bounded degree.

Theorem (Hamann, 2024)

Every bounded degree quasi-transitive graph excluding a minor is
quasi-isometric to some planar quasi-transitive graph of bounded degree.

Theorem (MacManus, 2024)

Every bounded degree quasi-transitive graph excluding a minor is
quasi-isometric to some planar Cayley graph of bounded degree.
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Beyond planarity

G is k-planar (k ∈ ℕ) if it has an drawing in ℝ2 such that each edge is
crossed by at most k other edges.
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G is k-planar (k ∈ ℕ) if it has an drawing in ℝ2 such that each edge is
crossed by at most k other edges.

Theorem (Esperet, G. 2024)

The property of being k-planar for some k ∈ ℕ is a geometric invariant for
bounded degree graphs.

Corollary
Every graph of bounded degree which is quasi-isometric to a planar graph
is k-planar for some k ∈ ℕ.

Conjecture (Georgakopoulos, Papasoglou 2023)

Let G be a bounded degree quasi-transitive graph. Then G is
quasi-isometric to a planar graph if and only if it is k-planar for some k ∈ ℕ.
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Thank you for your attention.
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