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G: (connected) graph, countable vertex set, locally finite.
G transitive (resp. quasi-transitive) if the action of Aut(G) on V(G) has
one (resp. a finite number of) orbit.
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Canonical tree-decompositions

Tree-decomposition of G: (T, V) where T tree, V = (V),cy (1 family of
subsets V; of V(G) s.t:
° V(G) = UteV(T) Vi
o for every nodes 7,¢',¢" such that 7' is on the unique path of T from ¢
tot”, V,nVy CVy;
@ every edge e € E(G) is contained in some induced subgraph G[V;] for
some t € V(T).
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Canonical tree-decompositions

Tree-decomposition of G: (T, V) where T tree, V = (V),cy (1 family of
subsets V; of V(G) s.t:

° V(G) = UteV(T) Vi

o for every nodes 7,¢',¢" such that 7' is on the unique path of T from ¢
tot”, V,nVy CVy;

@ every edge e € E(G) is contained in some induced subgraph G[V;] for
some t € V(T).

(T, V) is canonical if Aut(G) induces an action on T s.t. foreach
t€V(T),y € AWG), V,, =V, 7.

Adhesion sets: the sets V, NV, for tt' € E(T).

Torso G[V;]: G[V,] + all edges belonging to the adhesion sets V, NV, for
! e V(T).
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Decompositions in components of low connectivity

Theorem (Tutte; DSS)

Every 2-connected locally finite graph G has a canonical

tree-decomposition of adhesion at most 2 whose torsos are either finite
cycles, edges, or 3-connected graphs.
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Decompositions in components of low connectivity

— What if G is 3-connected?
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Decompositions in components of low connectivity

— What if G is 3-connected?
The notion of “maximal 4-connected component” is not the right one to
use.
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Robertson-Seymour structure theorem

[Robertson-Seymour '03] “If a finite graph G exclude some minor H, there
is some g = 0 then G has a tree-decomposition where each torso almost
embeds in a surface of genus gy ."
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Robertson-Seymour structure theorem

[Robertson-Seymour '03] “If a finite graph G exclude some minor H, there
is some g = 0 then G has a tree-decomposition where each torso almost
embeds in a surface of genus gy ."

[Diestel-Thomas '99]: “Extends to infinite graphs excluding some finite
minor.
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Main result

Theorem (finite/planar)

Let G be a quasi-transitive locally finite graph excluding K, as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T, V), of adhesion at most k whose torsos are either
finite or quasi-transitive 3-connected planar minors of G.
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For every locally finite quasi-transitive graph G avoiding K, as a minor,
there is an integer k such that G is K, -minor-free.

Generalizes [Thomassen '92] dealing with the 4-connected case.
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For every locally finite quasi-transitive graph G avoiding K, as a minor,
there is an integer k such that G is K, -minor-free.

Generalizes [Thomassen '92] dealing with the 4-connected case.
G is accessible if there is a k > 0 s.t. for every two different ends, there is a

set of k vertices separating them.
[Woess '87] Locally finite quasi-transitive bounded treewidth graphs
are accessible.
[Dunwoody '07] Locally finite quasi-transitive planar graphs are
accessible.

Locally finite quasi-transitive graphs that exclude K, as a minor are
accessible.
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Proof idea

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order
3 separate exactly 2 components, and one of them have size 1.
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Let G be a quasi-transitive, quasi-4-connected, locally finite graph which
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Proof idea

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order
3 separate exactly 2 components, and one of them have size 1.
Try to combine the following two results:

Theorem (Thomassen '92)

Let G be a locally finite, quasi-transitive, quasi-4-connected graph G. If G
has a thick end, then G is either planar or admits K, as a minor.

Corollary

| \

Let G be a quasi-transitive, quasi-4-connected, locally finite graph which
excludes K, as a minor. Then G is planar or has finite treewidth.

A\

Theorem (Grohe '16)

Every finite graph G has a tree-decomposition of adhesion at most 3 whose
torsos are minor of G and are complete graphs on at most 4 vertices or
quasi-4-connected graphs.

v

L e ey




Grohe's decomposition

S e ey



|
Grohe's decomposition

. T Y



|
Grohe's decomposition

. T Y



|
Grohe's decomposition

. T Y



Grohe's decomposition




|
Plan of the proof

1 Assume that G is 3-connected, thanks to Tutte's decomposition.
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Separations

Separation: triple (Y, S,Z)s.t. V(G)=Y wSwZ and E[Y, Z] =0.
(Y, S, Z) tight if there are connected components Cy CY,C, C Z of
G\S with N(Cy) = N(C,) = S.

Lemma (Thomassen-Woess '93)

G locally finite. For every v € V(G) and k > 1, there is a finite number of
tight separations (Y, S, Z) of order k in G such thatv € S.

If T acts quasi-transitively on G, there is a finite number of T'-orbits of
tight separations of order at most k in G.

— (T, V) canonical tree-decomposition of G locally finite of bounded
adhesion with tight edge-separations, then E(T)/Aut(G) finite.
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Some useful tools

Lemma (HLMR '19)

If G quasi-transitive locally finite and (T, V) canonical tree-decomposition
of bounded adhesion with E(T)/Aut(G) finite, then G[V,] and G[V;] are
quasi-transitive locally finite.
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Some useful tools

Lemma (HLMR '19)

If G quasi-transitive locally finite and (T, V) canonical tree-decomposition
of bounded adhesion with E(T)/Aut(G) finite, then G[V,] and G[V;] are
quasi-transitive locally finite.

Proposition (CHM '22)

Let G be quasi-transitive locally finite and (T', V) be a canonical
tree-decomposition of G of bounded adhesion with tight separations. If
there is a canonical family (T,, V,),cy () of canonical tree-decompositions of
the torsos G[V,] with bounded adhesion and tight separations, then there
exists a canonical tree-decomposition (T', V') of G that refines (T, V) with
respect to the family (T, V,),cy (r)-

. Ty



|
Separations of order 3: degeneracy

A separation (Y, .S, Z) € Sep_3(G) is degenerate if Z connected, .S
independent set and |Y| = 1.
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A separation (Y, S, Z) € Sep_;(G) is degenerate if Z connected, .S
independent set and |Y| = 1.

.\
. s
o

V4 S Y
Degenerate separation

Lemma (Grohe '16)

Let G be a 3-connected locally finite graph, and (Y, S, Z) be a proper
separation of order 3. Then G[Z U S] is a (faithful) minor of G if and only
if Y, S, Z) is non-degenerate.
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Separations of order 3: degeneracy

A separation (Y, .S, Z) € Sep_3(G) is degenerate if Z connected, .S
independent set and |Y| = 1.

Lemma (Grohe '16)

Let G be a 3-connected locally finite graph, and (Y, S, Z) be a proper
separation of order 3. Then G[Z U S] is a (faithful) minor of G if and only
if (Y, S, Z) is non-degenerate.

| A\

Corollary

Let G be a 3-connected locally finite graph, and (T, V) be a
tree-decomposition of G whose edge-separations have order 3 and are
non-degenerate. Then G[V;] is a (faithful) minor of G for each t € V(T).

. Ty



o
Plan of the proof (reminder)

1 Assume that G is 3-connected, thanks to Tutte's decomposition.

2 Find a canonical tree-decomposition that distinguishes the tangles of
order 4.

3 Assume that G is infinite with a unique tangle of order 4.

4 Adapt Grohe's approach to find a canonical tree-decomposition of G
with a unique infinite torso which is “almost quasi-4-connected”.

5 Prove that this torso has either bounded treewidth or is 3-connected
planar.
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Tangles of order 4

A tangle (of order 4) is a subset 7 of Sep_4(G) such that
© For all separations (Y, S, Z) € Sep_4(G), either (Y,S,Z) € T or
Z,8,Y)eT;

@ For all separations (Y}, S}, Z,), (Y5, 55, Z,), (Y3, 83, Z3) € T, either
Z,NZyN Zs # @ or there exists an edge with an endpoint in each Z;;
and

© For all separations (Y, S,Z2)e T, Z # 0.
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Tangles of order 4

A tangle (of order 4) is a subset 7 of Sep_4(G) such that
© For all separations (Y, S, Z) € Sep_4(G), either (Y,S,Z) € T or
Z,8,Y)eT;

@ For all separations (Y}, S}, Z,), (Y5, 55, Z,), (Y3, 83, Z3) € T, either
Z,NZyN Zs # @ or there exists an edge with an endpoint in each Z;;
and

© For all separations (Y, S,Z2)e T, Z # 0.

Order < on Sep_4(G):
(Y,S,Z2)<X', 8", Z")ifand only if SUY' C SuY and SUZ C S'UZ’.
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Region/End tangles

A tangle T of order 4 is:
@ A region tangle if it is w.q.0.

@ An end tangle otherwise.
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Step 2: Distinguishing tangles of order 4

Theorem (CHM '22)

G locally finite. There exists a canonical tree-decomposition (T, V) that
distinguishes the set tangles of order at most 4.
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Step 2: Distinguishing tangles of order 4

Theorem (CHM '22)

G locally finite. There exists a canonical tree-decomposition (T, V) that
distinguishes the set tangles of order at most 4.

— (T, V) has non-degenerate separations.

. Ty
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Step 3: graphs with a unique region tangle

— Every torso has at most one tangle of order 4.
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Step 3: graphs with a unique region tangle

— Every torso has at most one tangle of order 4.
Goal: Show that such tangles are region tangles.

Proposition

k > 1, G locally finite connected quasi-transitive. Then G cannot have
exactly one end of size exactly k.

— Generalizes [Thomassen '92]: “G has one end = this end is thick.

. Ty



o
Plan of the proof (reminder)

1 Assume that G is 3-connected, thanks to Tutte's decomposition.

2 Find a canonical tree-decomposition that distinguishes the tangles of
order 4.

3 Assume that G is infinite with a unique (region) tangle of order 4.

4 Adapt Grohe's approach to find a canonical tree-decomposition of G
with a unique infinite torso which is “almost quasi-4-connected”.

5 Prove that this torso has either bounded treewidth or is 3-connected
planar.

. Ty



o
Plan of the proof (reminder)

1 Assume that G is 3-connected, thanks to Tutte's decomposition.

2 Find a canonical tree-decomposition that distinguishes the tangles of
order 4.

3 Assume that G is infinite with a unique (region) tangle of order 4.

4 Adapt Grohe's approach to find a canonical tree-decomposition of G
with a unique infinite torso which is “almost quasi-4-connected”.

5 Prove that this torso has either bounded treewidth or is 3-connected
planar.

. Ty



|
Minimal separations of order 3

G: 3-connected with unique region tangle 7.

. T



|
Minimal separations of order 3

G: 3-connected with unique region tangle 7.

T,pin:= minimal non-degenerate separations of (7, <).

. T



|
Minimal separations of order 3

G: 3-connected with unique region tangle 7.
T,pin:= minimal non-degenerate separations of (7, <).

(Yl’ Sl’ Zl)’ (Yz, Sz, Zz) are Orthogona| if (Yl U Sl) N (Y2 U Sz) - Sl N SZ'
crossing otherwise.

. T



|
Minimal separations of order 3

G: 3-connected with unique region tangle 7.
T..in:= minimal non-degenerate separations of (7, <).

(Yl’ Sl’ Zl)’ (Yz, Sz, Zz) are Orthogona| if (Yl U Sl) N (Y2 U Sz) - Sl N SZ'
crossing otherwise.

Lemma (Grohe '16)

If(Y,,Sy,Z,),Y,,S,,Z,) € T,, distinct are crossing, then there are two
distinct vertices s; € S;, i € {1,2} such that s;s, € E(G) and

S;NY;_; ={s;} and S, NS, =@. Moreover, such crossing edges form a
matching in G.

. T
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Minimal separations of order 3

S, S, 0\ o o
Y2 Yz \.

Y, S, z Y, S, z,
Orthogonal separations Crossing separations
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Easy case: orthogonal family

If separations of T, , are pairwise orthogonal:

Xr:i= () (Zus)
(Y.S,Z2)eTy

. Ty



-]
Easy case: orthogonal family

If separations of 7, are pairwise orthogonal:

Xri= [ (Zus)
(Y,S,2)ETyq

Proposition

If T, is orthogonal, then G[X ] is a quasi-4-connected minor of G.
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If separations of 7,, are pairwise orthogonal:

Xr:= [] (Zus)
Y.,S,.2)eTy

Proposition

If T, is orthogonal, then G[X ] is a quasi-4-connected minor of G.
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Non-orthogonal case

M : matching formed by crossing-edges.
Grohe's main result: “After contracting every edge of M, we are in the
orthogonal case’”.
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Non-orthogonal case

M : matching formed by crossing-edges.
Grohe's main result: “After contracting every edge of M, we are in the
orthogonal case’”.

RT::< U S>U< N Z)
(Y.S.Z)ET, (Y.S.2)eT,,

M C Ry and in G/M, there is an induced tangle of order 4 7' s.t.

RT/M = XT"

. Ty
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If G/M[X] is planar or has bounded treewidth, then G[R] also does. \

. Ty



o
Plan of the proof (reminder)

1 Assume that G is 3-connected, thanks to Tutte's decomposition.

2 Find a canonical tree-decomposition that distinguishes the tangles of
order 4.

3 Assume that G is infinite with a unique (region) tangle of order 4.

4 Adapt Grohe's approach to find a canonical tree-decomposition of G
with a unique infinite torso which is “almost quasi-4-connected”.

5 Prove that this torso has either bounded treewidth or is 3-connected
planar.

. Ty



-]
Plan of the proof (reminder)

1 Assume that G is 3-connected, thanks to Tutte's decomposition.

2 Find a canonical tree-decomposition that distinguishes the tangles of
order 4.

3 Assume that G is infinite with a unique (region) tangle of order 4.

4 Adapt Grohe's approach to find a canonical tree-decomposition of G
with a unique infinite torso which is “almost quasi-4-connected”.

5 Prove that this torso has either bounded treewidth or is 3-connected
planar.

. Ty



|
Cayley graphs

' =< .S >: finitely generated group. Assume S = S~

. Ty



|
Cayley graphs

' =< .S >: finitely generated group. Assume S = S~
Cay(T', .S) is the labelled graph with vertex set I" and adjacencies xy for
every x,y €' such that y € S - x.

Cay(Z2,S), with S = {a, b}

. Ty
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Finite prensentability

A finitely generated group I' is minor-excluding if some of its locally finite
Cayley graphs exclude K, as a minor.
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Finite prensentability

A finitely generated group I' is minor-excluding if some of its locally finite
Cayley graphs exclude K, as a minor.
[Droms '06] Planar groups are finitely presented.

Every minor-excluding finitely generated group T is finitely presented.

Proof based on the approach of [Hamann '18]

. Ty



Domino Problem

A hd
2 D4
KKK

Source: ByParclyTaxel-0Ownwork, FAL,https:
//commons.wikimedia.org/w/index.php?curid=49467917
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Domino Problem

PO OO GOOOO0L
Lo X 8 X DX X | 2

Ll DX DX SPRPX | PRPX DX X

PO 000000004
X | DX X X DX 3

XX DX X SPRPX 4
09090004
X

Source: ByClaudioRocchini-Ownwork,CCBY-SA3.0,https:
//commons .wikimedia.org/w/index.php?curid=12128873
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By Claudio Rocchini - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12128873

Domino Problem

Domino problem on (T, S):
Input: a finite alphabet X and a finite set ¥ = {F}, ..., F,} of forbidden

patterns, where F; is a Z-coloring of the 1-ball around 1 in Cay(G, S).

]
Question: Is there a vertex coloring ¢ : V(G) — X avoiding F?
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Domino Problem

Domino problem on (T, S):
Input: a finite alphabet X and a finite set ¥ = { F}, ..., F,} of forbidden

patterns, where F; is a Z-coloring of the 1-ball around 1 in Cay(G, .S).

1
Question: Is there a vertex coloring ¢ : V(G) — X avoiding F?

Decidable on virtually-free groups;
[Berger '66] Undecidable on Z2;
[ABM "19] Undecidable on surface groups.
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Domino Problem

Domino problem on (T, S):
Input: a finite alphabet X and a finite set ¥ = {F), ..., F,} of forbidden
patterns, where F; is a X-coloring of the 1-ball around 1 in Cay(G, S).
Question: Is there a vertex coloring ¢ : V(G) — X avoiding F?
Decidable on virtually-free groups;
[Berger '66] Undecidable on Z2;

[ABM '19] Undecidable on surface groups.

Conjecture (Ballier-Stein '18)
The domino problem on (I, S) is decidable if and only if T is virtually-free.
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Domino Problem

Domino problem on (T, S):

Input: a finite alphabet X and a finite set 7 = {F}, ..., F,} of forbidden
patterns, where F; is a X-coloring of the 1-ball around 1 in Cay(G, S).
Question: Is there a vertex coloring ¢ : V(G) — X avoiding F7

Decidable on virtually-free groups;
[Berger '66] Undecidable on Z2;
[ABM "19] Undecidable on surface groups.

Conjecture (Ballier-Stein '18)
The domino problem on (I, S) is decidable if and only if T is virtually-free.

The conjecture is true for planar groups and more generally for
minor-excluding groups.
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Questions

If G is locally finite quasi-transitive, and M is an Aut(G)-invariant
matching, is there an orientation of M such that the obtained graph is still
quasi-transitive (for the action of some subgroup T of Aut(G))?
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