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Twin-width of unordered graphs

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs
(G=G,,G,_,...,G;) where G,_, is obtained by identifying two vertices of

G;.
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Twin-width of unordered graphs

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs
(G=G,,G,_,...,G;) where G,_, is obtained by identifying two vertices of

G,
V(G,;) < partition of V(G).
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Twin-width of unordered graphs

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs
(G=G,,G,_,...,G;) where G,_, is obtained by identifying two vertices of

G;.
VI(G,-) < partition of V(G).
For every X,Y € V(G,) put:
@ An edge XY € E(G),) if G[X,Y] is a biclique;
@ A nonedge in G; if G[X,Y] has no edge;
o A red edge XY € R(G;) otherwise.
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Twin-width of unordered graphs

A contraction sequence of G:
Sequence of trigraphs G = G,,G,_y, ..., G,, G such that
G, is obtained by performing one contraction in G, ;.
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Twin-width of unordered graphs

RN
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A contraction sequence of G:
Sequence of trigraphs G = G,,G,_y, ..., G,, G such that
G, is obtained by performing one contraction in G, ;.
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Twin-width of unordered graphs

A contraction sequence of G:
Sequence of trigraphs G = G,,G,_y, ..., G5, G such that
G, is obtained by performing one contraction in G, ;.
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Twin-width of unordered graphs

adg

A contraction sequence of G:
Sequence of trigraphs G = G,,G,_,, ..., G5, G| such that
G, is obtained by performing one contraction in G, ;.
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Twin-width of unordered graphs

adg

A contraction sequence of G:
Sequence of trigraphs G = G,,G,_,, ..., G5, G| such that
G, is obtained by performing one contraction in G,_;.
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Twin-width of unordered graphs

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = G,,G,_y, ..., G5, G such that
G, is obtained by performing one contraction in G, ;.
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Twin-width of unordered graphs

Definition (Contraction sequence,twin-width)

Contraction sequence of G = (V, E): sequence of trigraphs
(G=G,,G,_,...,G)) where G,_, is obtained by identifying two vertices of
G,.
V(G,;) < partition of V(G).
For every X,Y € V(G,) put:

o An edge if G[X,Y] is a biclique;

@ A nonedge if G[X,Y] has no edge;

@ A red edge otherwise.
(G;); has width at most d if every G, has red degree at most d.
The twin-width of G is the minimum width a contraction sequence of G
could have.
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Twin-width of unordered matrices
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Twin-width of unordered matrices
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Twin-width of unordered matrices
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Twin-width of unordered matrices
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Twin-width of unordered matrices
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Twin-width of unordered matrices

Twin-width naturally extends for matrices on finite alphabets.
Width of a sequence <> maximum number of red entries on a row/column
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Twin-width of ordered structures

Graphs are given together with a total order on their vertices.
Rows and columns indices of ordered matrices are totally ordered.
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Twin-width of ordered structures
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associated ordered adjacency matrix.
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Twin-width of ordered structures
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Twin-width of ordered structures
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Twin-width of ordered structures
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Twin-width of ordered structures

o —.—0 O O b
-
— O N = = N
C )o
(o — o o —=oJu
E -—--o-a=
(= S~ o —~9w
a0 -~ O T U QO @©

6/17

CoA 2022, Paris



Twin-width of ordered structures
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Twin-width of ordered structures

A graph G has twin-width at most d if and only if there is a total ordering
< of V(G) such that (G, <) has twin-width at most d.
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FO model checking on graphs

@ € FO(E®@): first order formula describing a graph problem.
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FO model checking on graphs

@ € FO(E?): first order formula describing a graph problem.

k k
@ = 3Ax;, Ax,, ..., Ix;, Vx, (\/x = x,-> \Y, <\/ E(x, x,.)>
i=1 i=1

corresponds to k-Dominating Set problem.
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FO model checking on graphs

@ € FO(E®@): first order formula describing a graph problem.

Definition

A class of graphs C is FO-FPT if there is an algorithm deciding for every
G € C whether G E ¢ in time O(f(|@]|) - n"°D) for some computable f.
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FO model checking on graphs

@ € FO(E®@): first order formula describing a graph problem.

Definition

A class of graphs C is FO-FPT if there is an algorithm deciding for every
G € C whether G E ¢ in time O(f(|¢|) - n"°D) for some computable f.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

There exists an algorithm that, given a graph G, a witness that
tww(G) < d and a formula @, decides whether G = ¢ in time

o/, o)) - n).
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Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)

Can we approximate twin-width?
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Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking d,G in
input and returning either a “No" answer if G has twin-width more than d,
or an f(d)-sequence otherwise?
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Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking d,G in
input and returning either a “No" answer if G has twin-width more than d,
or an f(d)-sequence otherwise?

— Would imply that the class of graphs with bounded twin-width is
FO-FPT.
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-
Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking d,G in
input and returning either a “No" answer if G has twin-width more than d,
or an f(d)-sequence otherwise?

— Would imply that the class of graphs with bounded twin-width is
FO-FPT.
— True for classes of ordered graphs/matrices!
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Algorithmic aspect of twin-width for ordered structures

There is an algorithm that, given an ordered n X n matrix M and an integer
22<9<d2 log(d)) n3) .

d, returns in time O(
e “No” if tww(G) > d;

4 .
e a 2% _sequence otherwise.

. SO EE Genn | D



Algorithmic aspect of twin-width for ordered structures

Theorem

There is an algorithm that, given an ordered n X n matrix M and an integer
2 0,

d, returns in time O(22°“ 5 p3)-

e “No” if tww(G) > d;

4 .
e a 2% _sequence otherwise.

Theorem

| A\

Every hereditary class C of ordered graphs is FO-FPT if and only if it has
bounded twin-width (unless FPT = AW[x] ).

A,
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Small classes

Definition

A hereditary class of graphs (resp. ordered graphs) is small if it contains at
most n!c" (resp. ¢") labeled graphs (resp. graphs) on n vertices.
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Small classes

Definition

A hereditary class of graphs (resp. ordered graphs) is small if it contains at
most n!c" (resp. ¢") labeled graphs (resp. graphs) on n vertices.

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

Every class of graphs of bounded twin-width is small.
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Small classes

Definition

A hereditary class of graphs (resp. ordered graphs) is small if it contains at
most n!lc" (resp. ¢") labeled graphs (resp. graphs) on n vertices.

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

Every class of graphs of bounded twin-width is small.

Conjecture (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

A hereditary class of graphs has bounded twin-width if and only if it is
small.
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Small classes

Definition

A hereditary class of graphs (resp. ordered graphs) is small if it contains at
most n!lc" (resp. ¢") labeled graphs (resp. graphs) on n vertices.

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

Every class of graphs of bounded twin-width is small.

Conjecture (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

A hereditary class of graphs has bounded twin-width if and only if it is
small.

Disproved recently [Bonnet, Geniet, Tessera, Thomassé '22]
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Small classes

Definition

A hereditary class of graphs (resp. ordered graphs) is small if it contains at
most n!lc" (resp. ¢") labeled graphs (resp. graphs) on n vertices.

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

Every class of graphs of bounded twin-width is small.

Conjecture (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

A hereditary class of graphs has bounded twin-width if and only if it is
small.

Disproved recently [Bonnet, Geniet, Tessera, Thomassé '22]
However true for classes of ordered matrices/graphs!
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Twin-width and counting

Theorem (Matrix)
M :class of ordered matrices closed under taking submatrices. Then exactly

one of the following holds:
@ M has bounded twin-width and contains at most 2°™ n x n matrices.

o , 2
@ M has unbounded twin-width and contains at least Y, _, (Z) k! > n!

n X n matrices.
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Twin-width and counting

Theorem (Matrix)
M :class of ordered matrices closed under taking submatrices. Then exactly

one of the following holds:
@ M has bounded twin-width and contains at most 2°™ n x n matrices.

. . 2
@ M has unbounded twin-width and contains at least Y, _, (Z) k! > n!

n X n matrices.

Theorem (Graph, conjectured in [Ballogh, Bollobas, Morris,'06 |)
C:class of ordered graphs. Then exactly one of the following holds:
@ C has bouded twin-width and contains at most 2°" graphs of order n.

@ C has unbounded twin-width and contains at least ). /[i]o (Z"k)k! > [%] !
graphs of order n.
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Permutation matrices

6 different ways of encoding a single permutation.

|

t
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Permutation matrices

6 different ways of encoding a single permutation.

A class of ordered matrices M has bounded twin-width if and only if it
contains one of the six encodings of all the permutations.
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Ordered matchings
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Ordered matchings

A class of ordered graphs C has bounded twin-width if and only if it
contains one of the 24 encodings of all the ordered matchings or all the
‘ordered permutation graphs”.

T o e



Interpretations and transductions

Interpretation: “Apply a first order formula ¢ on a graph G."
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Interpretations and transductions

Interpretation: “Apply a first order formula ¢ on a graph G."

@(x,y) = ~E(x,y)
Complement graph.
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Interpretations and transductions

Interpretation: “Apply a first order formula ¢ on a graph G."

@(x,y) = ~E(x,y)
Complement graph.

@(x,y) =3z, E(x,z) A E(z,y)

Square graph.
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Interpretations and transductions

Interpretation: “Apply a first order formula ¢ on a graph G."
Transduction: Idem but we are allowed to use constant number of unary
relations and to remove vertices.
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Interpretations and transductions

Interpretation: “Apply a first order formula ¢ on a graph G.”
Transduction: Idem but we are allowed to use constant number of unary
relations and to remove vertices.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

Transductions preserve the property of twin-width boundedness.
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Interpretations and transductions

Interpretation: “Apply a first order formula ¢ on a graph G."
Transduction: Idem but we are allowed to use constant number of unary

relations and to remove vertices.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

Transductions preserve the property of twin-width boundedness.

Definition

A graph class C is dependant (resp. monadically dependant) if the
hereditary closure of every interpretation (resp. transduction) is not the
class of all graphs.
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Interpretations and transductions

Interpretation: “Apply a first order formula ¢ on a graph G."
Transduction: Idem but we are allowed to use constant number of unary

relations and to remove vertices.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

Transductions preserve the property of twin-width boundedness.

Definition

A graph class C is dependant (resp. monadically dependant) if the
hereditary closure of every interpretation (resp. transduction) is not the
class of all graphs.

— Classes with bounded twin-width are monadically dependant.
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Interpretations and transductions: the ordered case

C: class of ordered graphs. Then exactly one of the following holds:

@ C has bounded twin-width and is monadically dependant.

@ C has unbounded twin-width and is not dependant.
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Main result

Theorem (Graph version)

Let € be a hereditary class of ordered graphs. The following are
equivalent.

@ @ has bounded twin-width.
@ € is monadically dependent.

© € is dependent.

@ € contains 2°W ordered n-vertex graphs.

Ln/2]

@ ¥ contains less than Zk=o

n.

( Z"k) k! ordered n-vertex graphs, for some

© € includes neither one of 25 hereditary ordered graph classes M , ,
nor all the ordered permutation graphs.

@ FO-model checking is fixed-parameter tractable on €.
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Proof overview
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