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Cycle basis

Given G|, G,, their F,-sum G| @ G, is the graph

V(G U V(G,), E(G)AE(G),)).

A graph is even if all its vertices have even degree.

The cycle space C(G) is the set of all even subgraphs of G (equiped with

®).

The set of cycles of a graph generates its cycle space.

A cycle basis of G is a set of cycles generating C(G).
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Maclane's planarity criterion

The set of facial cycles Cy,, of a 2-connected plane graph forms a cycle
basis.

The edge-congestion of a cycle basis is the minimum k > 0 such that each
edge of G appears in at most k elements of C.

The basis-number bn(G) of G is the minimum k such that G has a
cycle-basis with edge-congestion k.

If G is plane, Cpian has edge-congestion at most 2.

Theorem (Maclane's planarity criterion (1937))
A graph G is planar if and only if bn(G) < 2.
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Some generalities about basis number

Why do we like basis number?

o If G* is obtained from G after subdividing edges, then bn(G*) = bn(G).
@ For each e € E(G), bn(G/e) < bn(G).

@ For each e € E(G), bn(G) < bn(G —e) + 1.

@ For each v € V(G), bn(G) < bn(G — v) + 2.

Why do we NOT like basis number?
Not monotone under taking subgraph.

@ For each A C E(G), bn(G — A) < bn(G) + O(log2 [A].
Why do we hate basis number?

For any k € N, there exists a graph G with bn(G) = 3, and a vertex
v € V(G) such that bn(G —v) > k
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[Freedman, Hastings 2012] Every graph has basis number O(log? n).

[Schmeichel, 1981] Every graph embeddable in an oriented surface of
genus g has basis number at most 2g + 2.

[Lehner, Miraftab 2025] Every graph embeddable in a surface of genus
g has basis number at most O(log? 2).

[Lehner, Miraftab 2025] Every toroidal graph has basis number at
most 3.
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Minors

A graph H is a minor of G if H can be obtained from G after performing
the following operations:

@ vertex deletions;

o edge deletions;

@ edge contractions.

Bounded genus
Planar

Bounded treewidth Exclude a minor
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Main result

Theorem (Geniet, G. 2026+)

There exists a function f,;, : N = N such that for any graph H, any
H -minor free graph G satisfies bn(G) < fin(| ).

12 . . .
Our original proof gave f,,, (1) = 2277, Combining our proof with

independant results of Miraftab, Morin and Yuditsky (2026+), we obtain
Smin(1) = O(r¢) for some constant ¢ < 32210.

Let C be a monotone class of graphs. Then C has bounded basis number if
and only if all graphs in C exclude some fixed graph H as a minor.
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Tree-decompositions

Adhesion:= max size of adhesion sets

Width:= max size bag - 1
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Graph Minor Structure Theorem

Theorem (Graph Minor Structure Theorem, Robertson, Seymour, 2003)

For every fixed H, there exists a, k,g every H-minor free graph G has a
tree-decomposition of adhesion at most k, whose torsos are (a, k)-quasi
embeddable in a surface of genus g.
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Graph Minor Structure Theorem

Theorem (Graph Minor Structure Theorem, Robertson, Seymour, 2003)

For every fixed H, there exists a, k, g every H-minor free graph G has a
tree-decomposition of adhesion at most k, whose torsos are (a, k)-quasi
embeddable in a surface of genus g.

Gorsky, Seweryn and Wiederrecht (2025) proved that one can get
k,a € O(H|*") and g € O(| H|?).
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There exists f,4 : N> — N such that for each monotone graph class G with
basis number at most b, every graph G with a tree-decomposition of
adhesion at most k and whose torsos are all in G satisfies bn(G) < fq(b, k).

Theorem (Geniet, G. 2026+)

There exists f,;,, : N> = N such that every graph G which is
(a, k)-almost-embeddable in a surface of genus g satisfies
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Proof overview

To prove our result using GMST, one must then know how to deal with:
@ Tree-decompositions of bounded adhesion.

@ Graphs almost embeddable in a surface.

Theorem (Geniet, G. 2026+)

There exists f,4 : N> — N such that for each monotone graph class G with
basis number at most b, every graph G with a tree-decomposition of
adhesion at most k and whose torsos are all in G satisfies bn(G) < f,4(b, k).

Theorem (Geniet, G. 2026+)

There exists fym : N> = N such that every graph G which is
(a, k)-almost-embeddable in a surface of genus g satisfies
bn(G) < fam(a, k, g).

Again, using [Miraftab, Morin, Yuditsky 2026+], f,4, fam are polynomial.
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Proof overview

Four main steps.
Step 1: Prove a weak condition sufficient to preserve basis number
boundedness when taking tree-decompositions.

Step 2: Show the existence of f4 in the special case of
path-decompositions.
— This part has also been covered with improved bounds by Miraftab,
Morin and Yuditsky (2026+).

Step 3: Show the existence of f,4 in the general case.
— Relies on adaptation of technical work from Bojanczyk and Pilipczuk
(2016).

Step 4: Show the existence of f,;;,, and concludes using the GMST.
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Step 1: Prove a weak condition sufficient to preserve basis number
boundedness when taking tree-decompositions.
Given (T, B) a family of paths P captures the adhesions of (T, g) if for each
u, v and each adhesion set A such that u, v € A, there exists a uv-path
PuaEP.

u

Theorem (Geniet, G. 2026)

Let (T, ) be a tree-decomposition of a graph G with adhesion k, whose
torsos have basis number at most b, and for which there exists a family of
paths P with edge-congestion ¢ capturing the adhesions of (T, ). Then

bn(G) < (2¢ + 1)(b + ).
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boundedness when taking tree-decompositions.
Given (T, B) a family of paths P captures the adhesions of (T, g) if for each
u, v and each adhesion set A such that u, v € A, there exists a uv-path
PuaEP.

u

Theorem (Geniet, G. 2026)

Let (T, ) be a tree-decomposition of a graph G with adhesion k, whose
torsos have basis number at most b, and for which there exists a family of
paths P with edge-congestion ¢ capturing the adhesions of (T, ). Then

bn(G) < (2¢ + 1)(b + ).

Problem: very weak condition.
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Step 2: Show the existence of f,4 in the special case of
path-decompositions.

<k <k <k <k <k <k
bn < fua(b, k)

Our approach: uses Simon's Forest Factorisation Theorem. Gives
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Sfualboky= b2,
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2
ftd(b7 k) =5 220(k ).

Theorem (Miraftab, Morin, Yuditsky 2026+)

Let b,k € N and let G be a graph admitting a path-decomposition of
adhesion k, in which each part has basis number at most b. Then
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Step 2: Show the existence of f,4 in the special case of
path-decompositions.
Our approach: uses Simon's Forest Factorisation Theorem. Gives

20@%

ftd(b7k):b'2 .

Theorem (Miraftab, Morin, Yuditsky 2026+)

Let b,k € N and let G be a graph admitting a path-decomposition of
adhesion k, in which each part has basis number at most b. Then

bn(G) < b + O(k log? k).

Theorem (Miraftab, Morin, Yuditsky 2026+)
Any graph with pathwidth k has basis number at most 4k.
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Step 3: Show the existence of f,4 in the general case.

Theorem (Geniet, G. 2026+)

There exists f,4 : N*> = N such that for each monotone graph class G with
basis number at most b, every graph G with a tree-decomposition of
adhesion at most k and whose torsos are all in G satisfies bn(G) < f,4(b, k).

)

} bn < fia(b, k)
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Step 3: The bounded treewidth case

Lemma (Bojanczyk, Pilipczuk 2016 (simplified))

If G has a tree-decomposition (T, B) of width k, then there exists
X C V(T) such that the quotient (T /X, By) tree-decomposition satisfies:

@ every bag admits a path-decomposition of width at most 3k + 1;

@ there exists a family of paths P capturing the adhesions of (T /X, fy)
with edge-congestion O(k*).
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Lemma (Bojanczyk, Pilipczuk 2016 (simplified))

If G has a tree-decomposition (T, B) of width k, then there exists

X C V(T) such that the quotient (T /X, By) tree-decomposition satisfies:
@ every bag admits a path-decomposition of width at most 3k + 1;

@ there exists a family of paths P capturing the adhesions of (T /X, fy)
with edge-congestion O(k*).

Theorem (Us, using Miraftab, Morin, Yuditsky 2026+)

For every k > 0, every graph with treewidth k has basis number O(k>).
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Lemma (Us, adapting Bojanczyk, Pilipczuk 2016 (simplified))
Let G be a monotone graph class. If G has a tree-decomposition (T, ) of
adhesion k whose torsos are in G, then there exists X C V(T) such that the
quotient (T /X, By) tree-decomposition satisfies:
@ every bag admits a path-decomposition of adhesion at most 3k, whose
torsos are in G*2k;
@ there exists a family of paths P capturing the adhesions of (T /X, fy)
with edge-congestion O(k*).
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Step 3: The general case

Lemma (Us, adapting Bojanczyk, Pilipczuk 2016 (simplified))
Let G be a monotone graph class. If G has a tree-decomposition (T, ) of
adhesion k whose torsos are in G, then there exists X C V(T) such that the
quotient (T /X, By) tree-decomposition satisfies:
@ every bag admits a path-decomposition of adhesion at most 3k, whose
torsos are in G*2k;
@ there exists a family of paths P capturing the adhesions of (T /X, fy)
with edge-congestion O(k*).

Theorem (Us, using Miraftab, Morin, Yuditsky 2026+)

For each monotone graph class G with basis number at most b, every
graph G with a tree-decomposition of adhesion at most k and whose torsos
are all in G satisfies bn(G) < (b + klog2 k)k*.
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Step 4

Step 4: Show the existence of f,,, and concludes using the GMST.

Theorem (Geniet, G. 2026+)

There exists fym : N> = N such that every graph G which is
(a, k)-almost-embeddable in a surface of genus g satisfies
bn(G) < fym(a, k, 8).

Technical, due to the non-monotone behavious of bn.

Theorem (Eppstein (2000) + Mazoit (2012))

Let G be a graph embedded in a surface S of genus g. Then

tw(G) = O(g - diam(G™)).
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Conclusion

Theorem (Geniet, G. 2026+)

For any graph H, any H-minor free graph G satistfies

bn(G) = O(| H [**°).

Better bounds? log(| H |)°) possible?
More general cases? bn(G) < f(cw(G))?

Replace monotone by hereditary in our result on tree-decompositions?

Infinite graphs?

Dziekuje bardzo!
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