

Cycle bases with low congestion in minor-excluded graphs

Ugo Giocanti¹

Joint work with Colin Geniet²

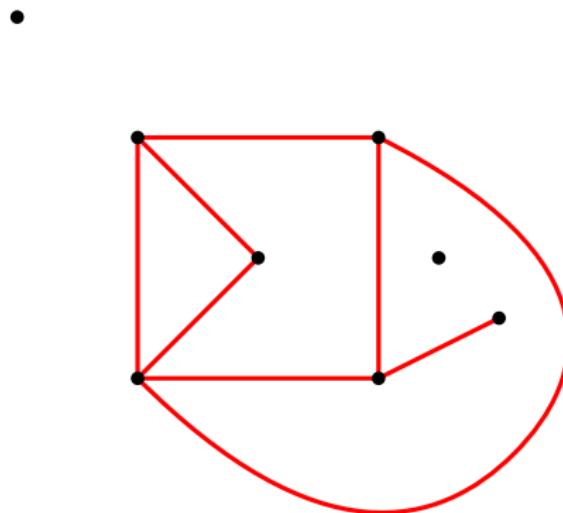
Séminaire ACRO, Marseille.

¹Jagiellonian University, Kraków, Poland

²Institute for Basic Science, Daejon, South Korea

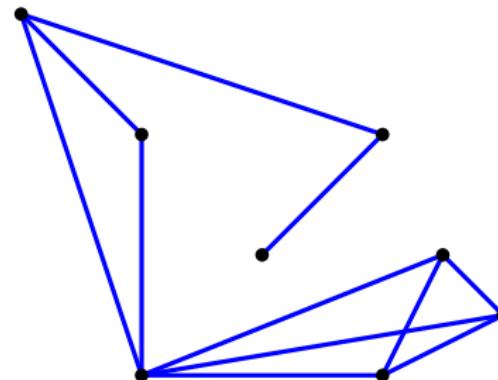
Cycle basis

Given G_1 , G_2 , their \mathbb{F}_2 -sum $G_1 \oplus G_2$ is the graph $(V(G_1) \cup V(G_2), E(G_1) \Delta E(G_2))$.



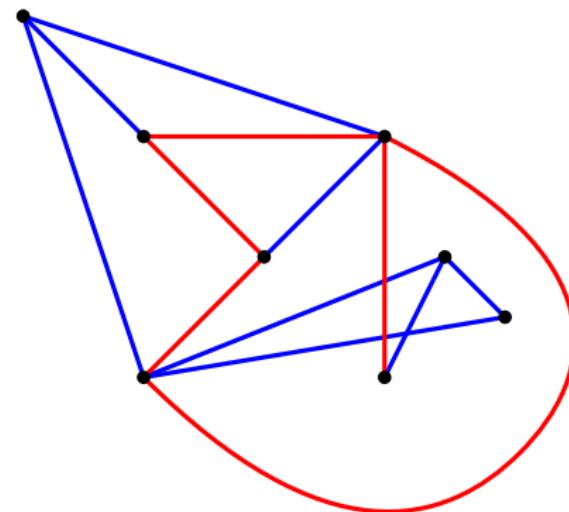
Cycle basis

Given G_1 , G_2 , their \mathbb{F}_2 -sum $G_1 \oplus G_2$ is the graph $(V(G_1) \cup V(G_2), E(G_1) \Delta E(G_2))$.



Cycle basis

Given G_1 , G_2 , their \mathbb{F}_2 -sum $G_1 \oplus G_2$ is the graph $(V(G_1) \cup V(G_2), E(G_1) \Delta E(G_2))$.



Cycle basis

Given G_1 , G_2 , their \mathbb{F}_2 -sum $G_1 \oplus G_2$ is the graph $(V(G_1) \cup V(G_2), E(G_1) \Delta E(G_2))$.

A graph is **even** if all its vertices have even degree.

The **cycle space** $\mathcal{C}(G)$ is the set of all even subgraphs of G (equipped with \oplus).

Remark

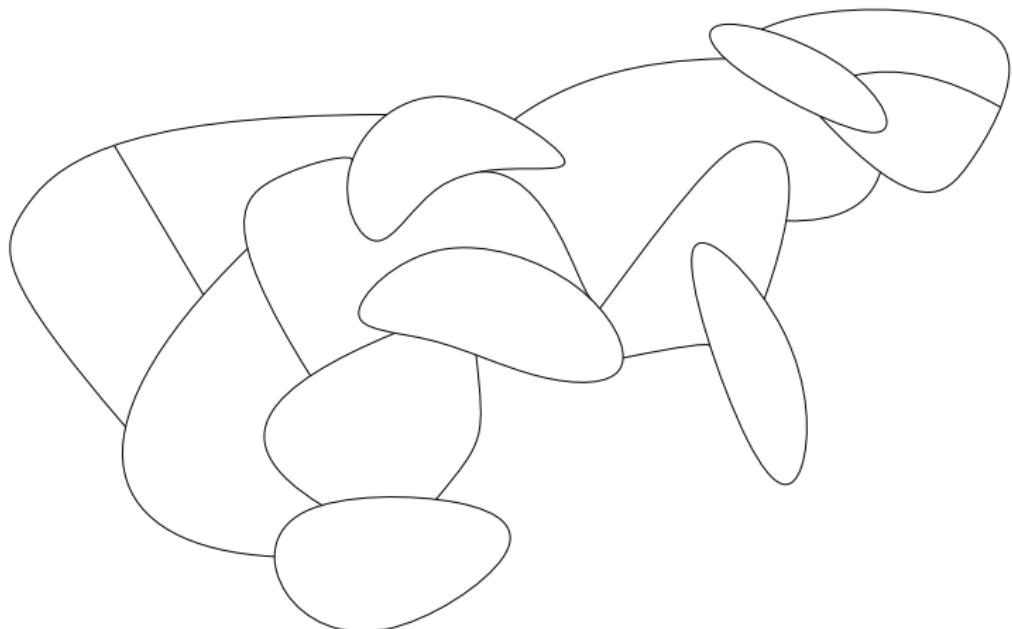
The set of cycles of a graph generates its cycle space.

A **cycle basis** of G is a set of cycles generating $\mathcal{C}(G)$.

MacLane's planarity criterion

Remark

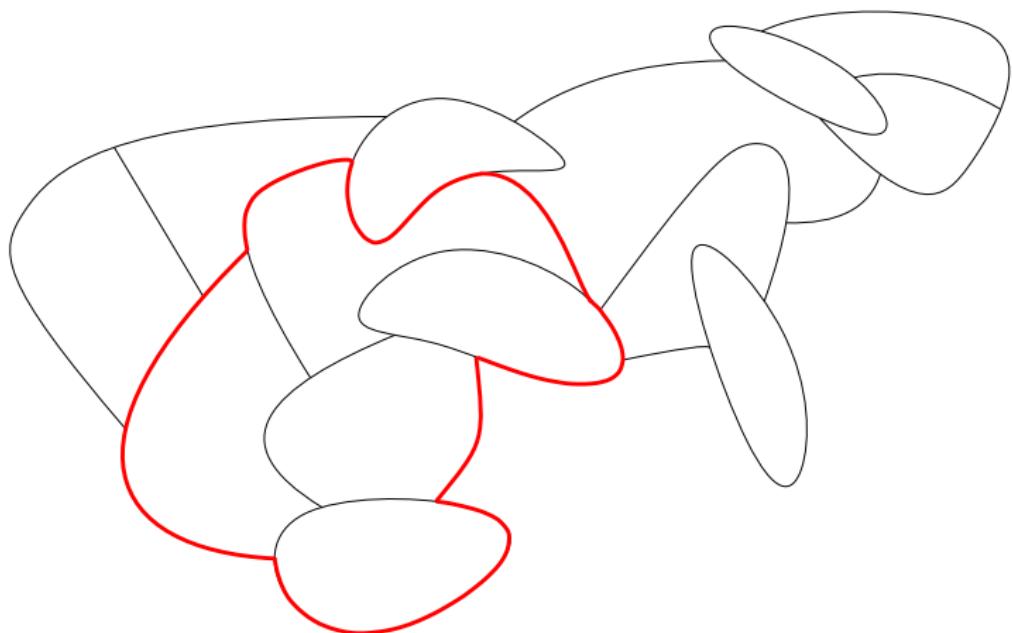
The set of facial cycles C_{plan} of a 2-connected plane graph forms a cycle basis.



MacLane's planarity criterion

Remark

The set of facial cycles C_{plan} of a 2-connected plane graph forms a cycle basis.



Remark

The set of facial cycles $\mathcal{C}_{\text{plan}}$ of a 2-connected plane graph forms a cycle basis.

The **edge-congestion** of a cycle basis is the minimum $k \geq 0$ such that each edge of G appears in at most k elements of \mathcal{C} .

The **basis-number** $\text{bn}(G)$ of G is the minimum k such that G has a cycle-basis with edge-congestion k .

MacLane's planarity criterion

Remark

The set of facial cycles C_{plan} of a 2-connected plane graph forms a cycle basis.

The **edge-congestion** of a cycle basis is the minimum $k \geq 0$ such that each edge of G appears in at most k elements of C .

The **basis-number** $\text{bn}(G)$ of G is the minimum k such that G has a cycle-basis with edge-congestion k .

Remark

If G is plane, C_{plan} has edge-congestion at most 2.

MacLane's planarity criterion

Remark

The set of facial cycles C_{plan} of a 2-connected plane graph forms a cycle basis.

The **edge-congestion** of a cycle basis is the minimum $k \geq 0$ such that each edge of G appears in at most k elements of C .

The **basis-number** $\text{bn}(G)$ of G is the minimum k such that G has a cycle-basis with edge-congestion k .

Remark

If G is plane, C_{plan} has edge-congestion at most 2.

Theorem (MacLane's planarity criterion (1937))

A graph G is planar if and only if $\text{bn}(G) \leq 2$.

Some generalities about basis number

- ★ Why do we **like** basis number?

Some generalities about basis number

- ★ Why do we like basis number?
- If G^* is obtained from G after subdividing edges, then $\text{bn}(G^*) = \text{bn}(G)$.

Some generalities about basis number

★ Why do we like basis number?

- If G^* is obtained from G after subdividing edges, then $\text{bn}(G^*) = \text{bn}(G)$.
- For each $e \in E(G)$, $\text{bn}(G/e) \leq \text{bn}(G)$.

Some generalities about basis number

★ Why do we like basis number?

- If G^* is obtained from G after subdividing edges, then $\text{bn}(G^*) = \text{bn}(G)$.
- For each $e \in E(G)$, $\text{bn}(G/e) \leq \text{bn}(G)$.
- For each $e \in E(G)$, $\text{bn}(G) \leq \text{bn}(G - e) + 1$.
- For each $v \in V(G)$, $\text{bn}(G) \leq \text{bn}(G - v) + 2$.

Some generalities about basis number

★ Why do we **like** basis number?

- If G^* is obtained from G after subdividing edges, then $\text{bn}(G^*) = \text{bn}(G)$.
- For each $e \in E(G)$, $\text{bn}(G/e) \leq \text{bn}(G)$.
- For each $e \in E(G)$, $\text{bn}(G) \leq \text{bn}(G - e) + 1$.
- For each $v \in V(G)$, $\text{bn}(G) \leq \text{bn}(G - v) + 2$.

★ Why do we **NOT like** basis number?

Some generalities about basis number

★ Why do we **like** basis number?

- If G^* is obtained from G after subdividing edges, then $\text{bn}(G^*) = \text{bn}(G)$.
- For each $e \in E(G)$, $\text{bn}(G/e) \leq \text{bn}(G)$.
- For each $e \in E(G)$, $\text{bn}(G) \leq \text{bn}(G - e) + 1$.
- For each $v \in V(G)$, $\text{bn}(G) \leq \text{bn}(G - v) + 2$.

★ Why do we **NOT like** basis number?

Not monotone under taking subgraph.

- For each $A \subseteq E(G)$, $\text{bn}(G - A) \leq \text{bn}(G) + O(\log^2 |A|)$.

Some generalities about basis number

★ Why do we **like** basis number?

- If G^* is obtained from G after subdividing edges, then $\text{bn}(G^*) = \text{bn}(G)$.
- For each $e \in E(G)$, $\text{bn}(G/e) \leq \text{bn}(G)$.
- For each $e \in E(G)$, $\text{bn}(G) \leq \text{bn}(G - e) + 1$.
- For each $v \in V(G)$, $\text{bn}(G) \leq \text{bn}(G - v) + 2$.

★ Why do we **NOT like** basis number?

Not monotone under taking subgraph.

- For each $A \subseteq E(G)$, $\text{bn}(G - A) \leq \text{bn}(G) + O(\log^2 |A|)$.

★ Why do we **hate** basis number?

Some generalities about basis number

★ Why do we **like** basis number?

- If G^* is obtained from G after subdividing edges, then $\text{bn}(G^*) = \text{bn}(G)$.
- For each $e \in E(G)$, $\text{bn}(G/e) \leq \text{bn}(G)$.
- For each $e \in E(G)$, $\text{bn}(G) \leq \text{bn}(G - e) + 1$.
- For each $v \in V(G)$, $\text{bn}(G) \leq \text{bn}(G - v) + 2$.

★ Why do we **NOT like** basis number?

Not monotone under taking subgraph.

- For each $A \subseteq E(G)$, $\text{bn}(G - A) \leq \text{bn}(G) + O(\log^2 |A|)$.

★ Why do we **hate** basis number?

Remark

For any $k \in \mathbb{N}$, there exists a graph G with $\text{bn}(G) = 3$, and a vertex $v \in V(G)$ such that $\text{bn}(G - v) \geq k$.

Known results

Theorem (MacLane's planarity criterion (1937))

A graph G is planar if and only if $\text{bn}(G) \leq 2$.

Known results

Theorem (MacLane's planarity criterion (1937))

A graph G is planar if and only if $\text{bn}(G) \leq 2$.

[Schmeichel, 1981] There exist graphs with arbitrary large basis number.

Known results

Theorem (MacLane's planarity criterion (1937))

A graph G is planar if and only if $\text{bn}(G) \leq 2$.

[Schmeichel, 1981] There exist graphs with arbitrary large basis number.

[Schmeichel, 1981] Cliques have basis number at most 3, and bicliques have basis number at most 4.

Known results

Theorem (MacLane's planarity criterion (1937))

A graph G is planar if and only if $\text{bn}(G) \leq 2$.

[Schmeichel, 1981] There exist graphs with arbitrary large basis number.

[Schmeichel, 1981] Cliques have basis number at most 3, and bicliques have basis number at most 4.

[Freedman, Hastings 2012] Every graph has basis number $O(\log^2 n)$.

Known results

Theorem (MacLane's planarity criterion (1937))

A graph G is planar if and only if $\text{bn}(G) \leq 2$.

[Schmeichel, 1981] There exist graphs with arbitrary large basis number.

[Schmeichel, 1981] Cliques have basis number at most 3, and bicliques have basis number at most 4.

[Freedman, Hastings 2012] Every graph has basis number $O(\log^2 n)$.

[Schmeichel, 1981] Every graph embeddable in an oriented surface of genus g has basis number at most $2g + 2$.

Known results

Theorem (MacLane's planarity criterion (1937))

A graph G is planar if and only if $\text{bn}(G) \leq 2$.

[Schmeichel, 1981] There exist graphs with arbitrary large basis number.

[Schmeichel, 1981] Cliques have basis number at most 3, and bicliques have basis number at most 4.

[Freedman, Hastings 2012] Every graph has basis number $O(\log^2 n)$.

[Schmeichel, 1981] Every graph embeddable in an oriented surface of genus g has basis number at most $2g + 2$.

[Lehner, Miraftab 2025] Every graph embeddable in a surface of genus g has basis number at most $O(\log^2 g)$.

Known results

Theorem (MacLane's planarity criterion (1937))

A graph G is planar if and only if $\text{bn}(G) \leq 2$.

[Schmeichel, 1981] There exist graphs with arbitrary large basis number.

[Schmeichel, 1981] Cliques have basis number at most 3, and bicliques have basis number at most 4.

[Freedman, Hastings 2012] Every graph has basis number $O(\log^2 n)$.

[Schmeichel, 1981] Every graph embeddable in an oriented surface of genus g has basis number at most $2g + 2$.

[Lehner, Miraftab 2025] Every graph embeddable in a surface of genus g has basis number at most $O(\log^2 g)$.

[Lehner, Miraftab 2025] Every toroidal graph has basis number at most 3.

Minors

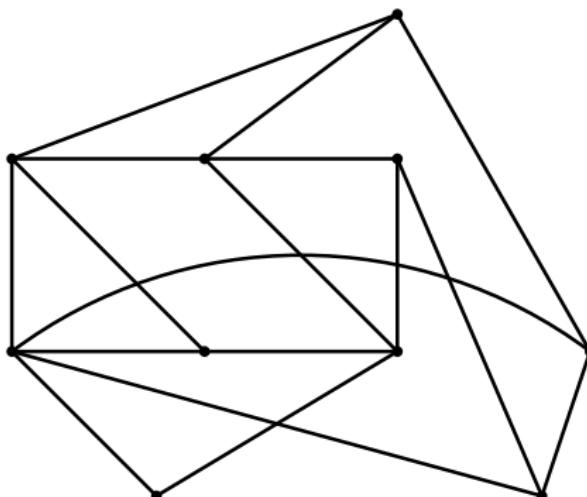
A graph H is a **minor** of G if H can be obtained from G after performing the following operations:

- vertex deletions;
- edge deletions;
- edge contractions.

Minors

A graph H is a **minor** of G if H can be obtained from G after performing the following operations:

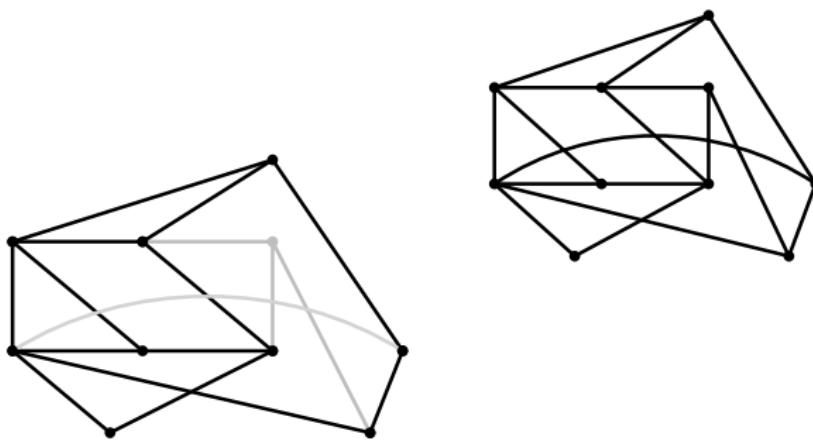
- vertex deletions;
- edge deletions;
- edge contractions.



Minors

A graph H is a **minor** of G if H can be obtained from G after performing the following operations:

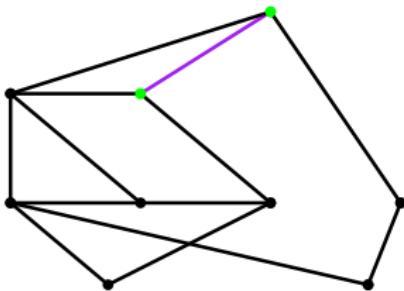
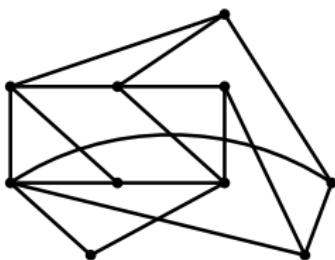
- vertex deletions;
- edge deletions;
- edge contractions.



Minors

A graph H is a **minor** of G if H can be obtained from G after performing the following operations:

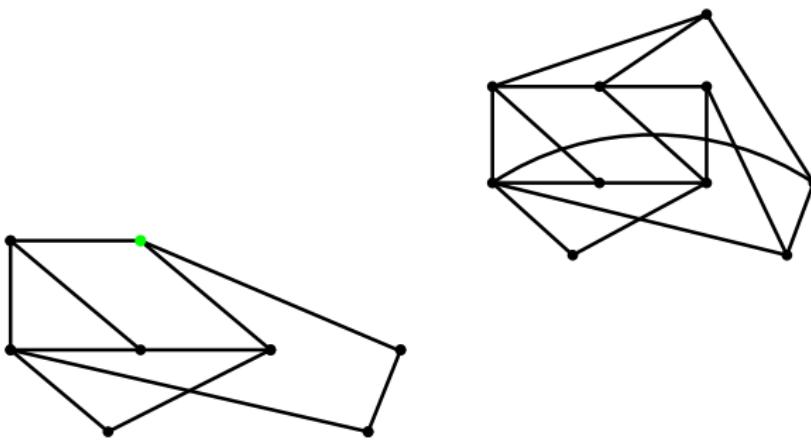
- vertex deletions;
- edge deletions;
- edge contractions.



Minors

A graph H is a **minor** of G if H can be obtained from G after performing the following operations:

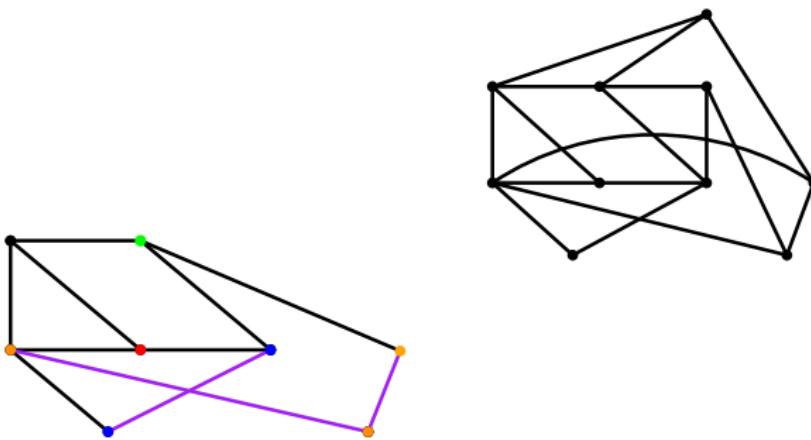
- vertex deletions;
- edge deletions;
- edge contractions.



Minors

A graph H is a **minor** of G if H can be obtained from G after performing the following operations:

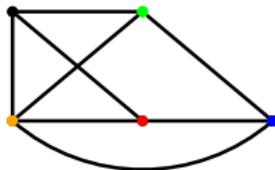
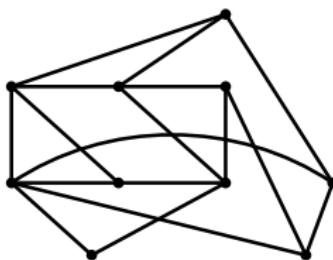
- vertex deletions;
- edge deletions;
- edge contractions.



Minors

A graph H is a **minor** of G if H can be obtained from G after performing the following operations:

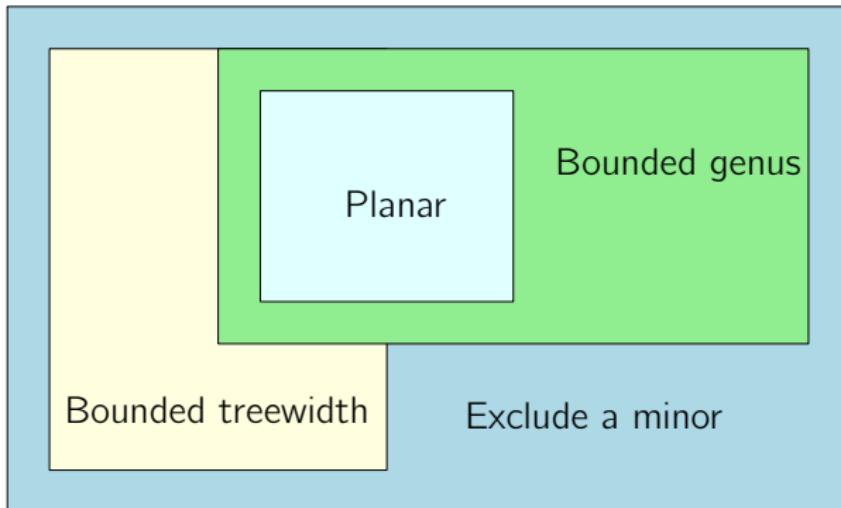
- vertex deletions;
- edge deletions;
- edge contractions.



Minors

A graph H is a **minor** of G if H can be obtained from G after performing the following operations:

- vertex deletions;
- edge deletions;
- edge contractions.



Main result

Theorem (Geniet, G. 2026+)

There exists a function $f_{\min} : \mathbb{N} \rightarrow \mathbb{N}$ such that for any graph H , any H -minor free graph G satisfies $\text{bn}(G) \leq f_{\min}(|H|)$.

Main result

Theorem (Geniet, G. 2026+)

There exists a function $f_{\min} : \mathbb{N} \rightarrow \mathbb{N}$ such that for any graph H , any H -minor free graph G satisfies $\text{bn}(G) \leq f_{\min}(|H|)$.

Our original proof gave $f_{\min}(t) = 2^{2^{O(t^2)}}$. Combining our proof with independant results of Mirafab, Morin and Yuditsky (2026+), we obtain $f_{\min}(t) = O(t^c)$ for some constant $c \leq 32210$.

Main result

Theorem (Geniet, G. 2026+)

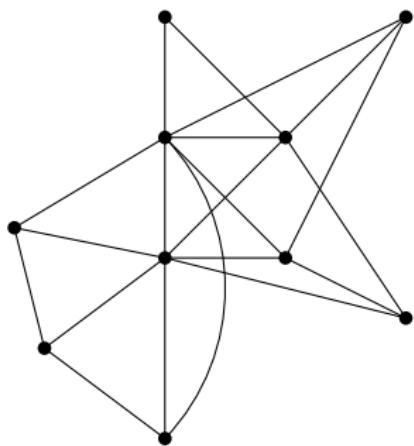
There exists a function $f_{\min} : \mathbb{N} \rightarrow \mathbb{N}$ such that for any graph H , any H -minor free graph G satisfies $\text{bn}(G) \leq f_{\min}(|H|)$.

Our original proof gave $f_{\min}(t) = 2^{2^{O(t^2)}}$. Combining our proof with independant results of Mirafab, Morin and Yuditsky (2026+), we obtain $f_{\min}(t) = O(t^c)$ for some constant $c \leq 32210$.

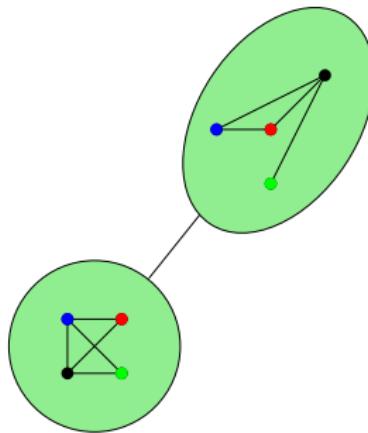
Corollary

Let \mathcal{C} be a monotone class of graphs. Then \mathcal{C} has bounded basis number if and only if all graphs in \mathcal{C} exclude some fixed graph H as a minor.

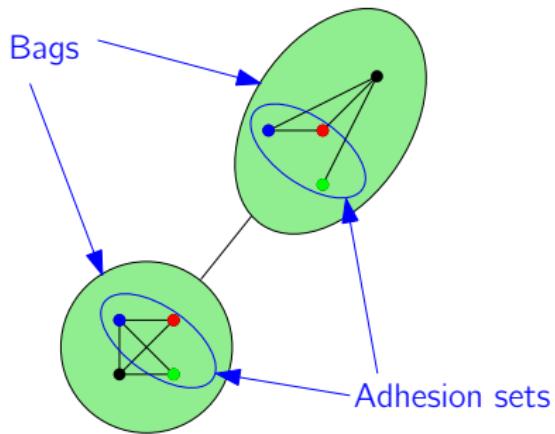
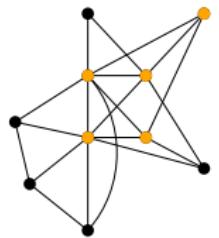
Tree-decompositions



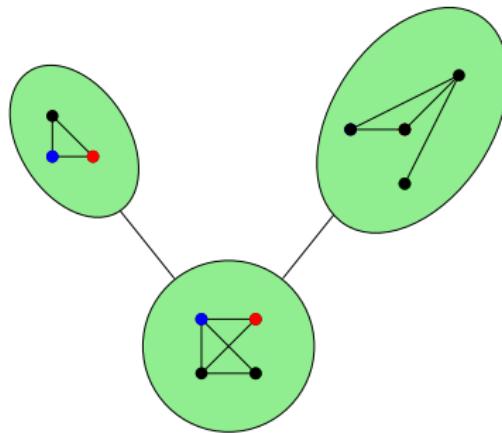
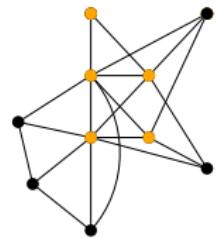
Tree-decompositions



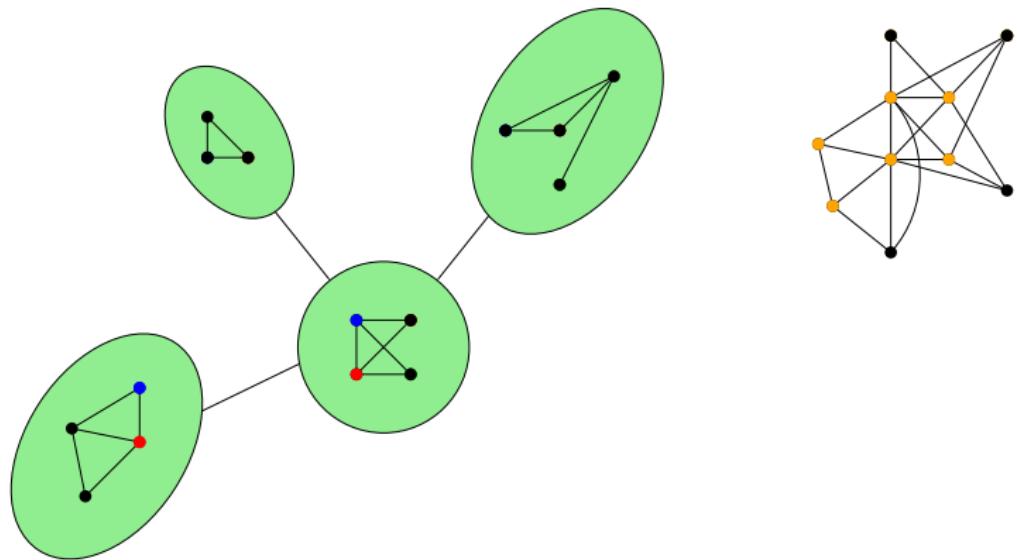
Tree-decompositions



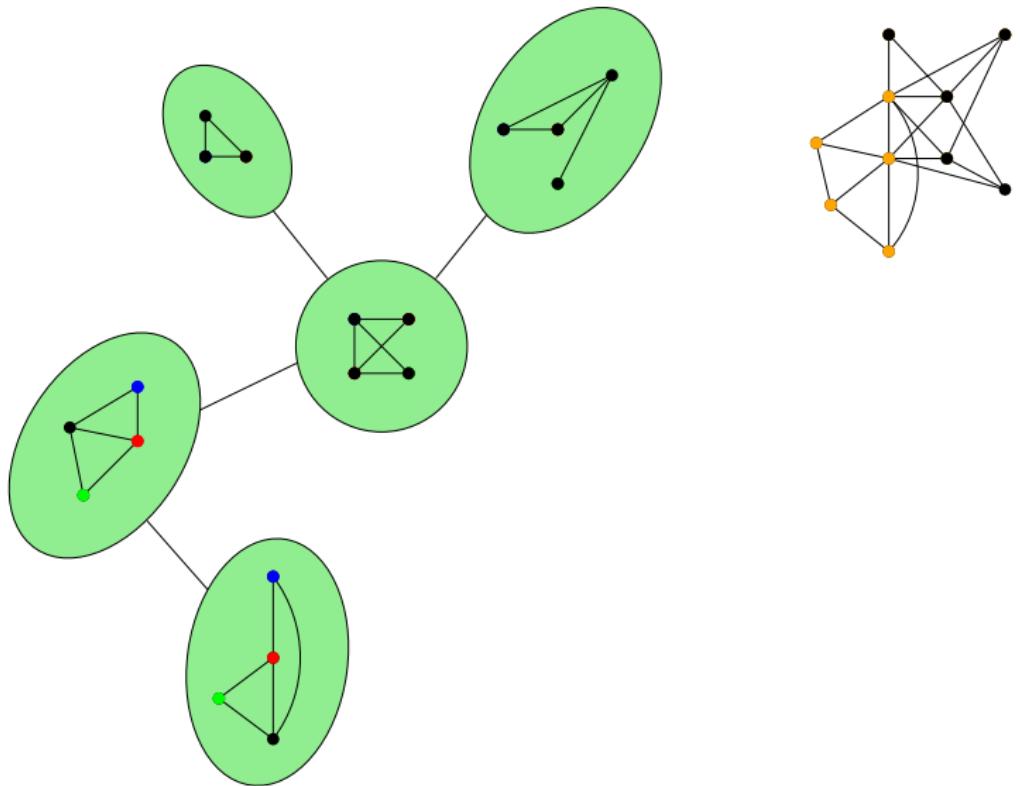
Tree-decompositions



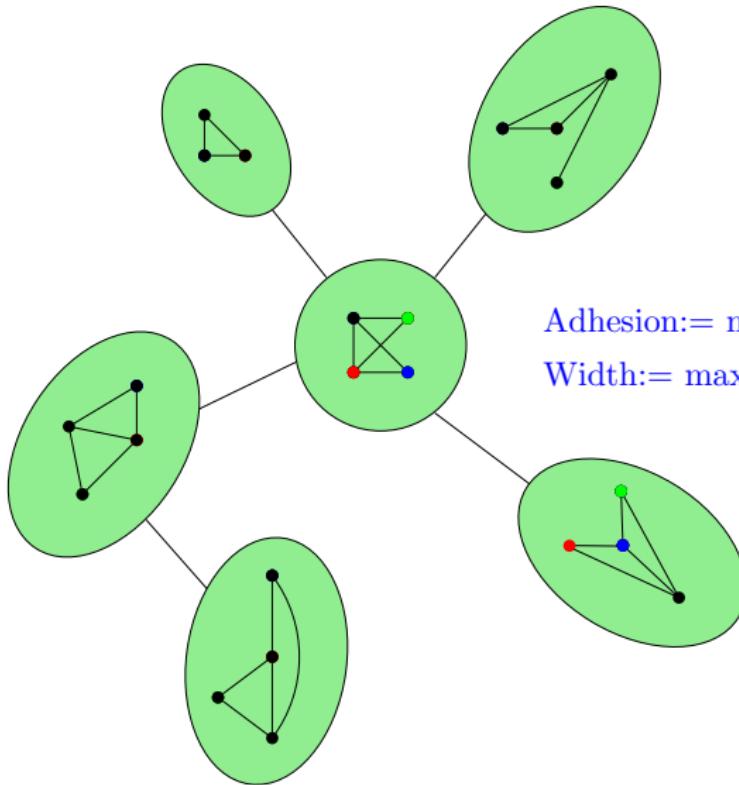
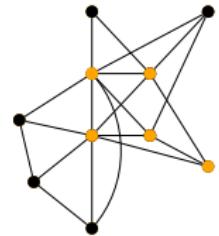
Tree-decompositions



Tree-decompositions

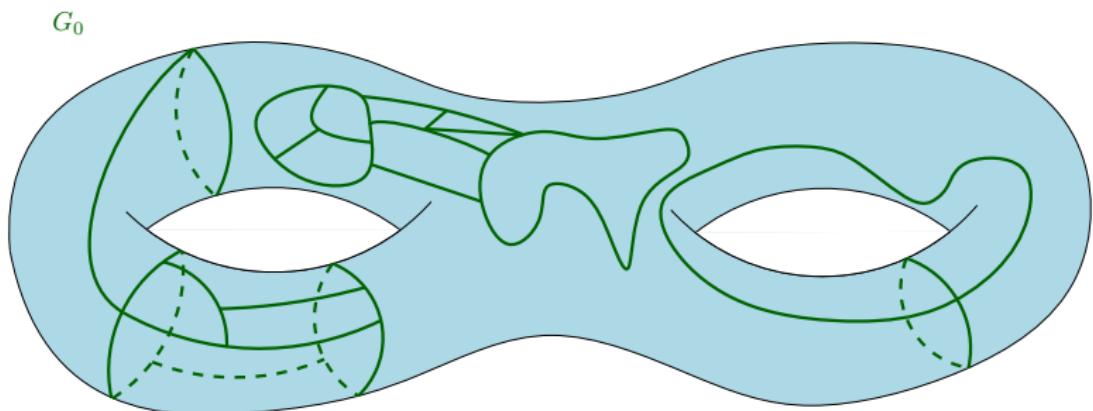


Tree-decompositions



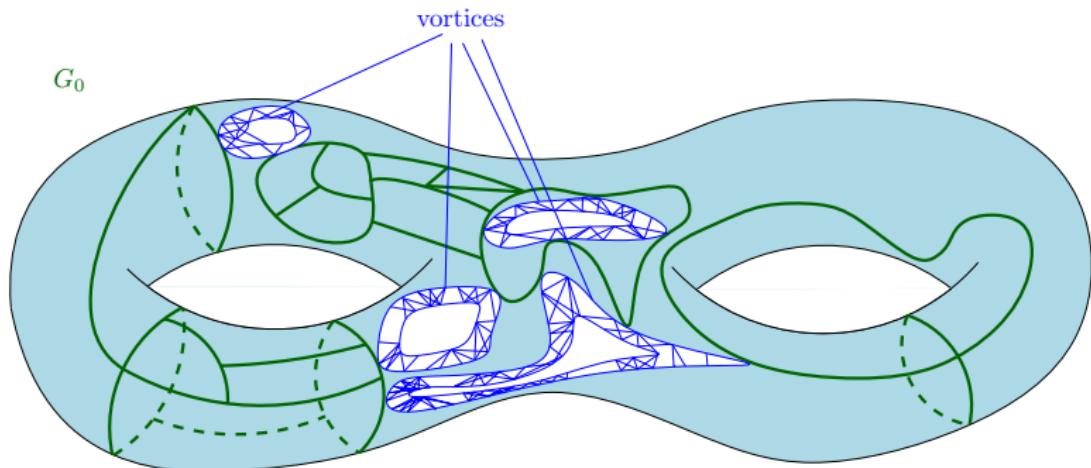
Adhesion:= max size of adhesion sets
Width:= max size bag - 1

Graph Minor Structure Theorem



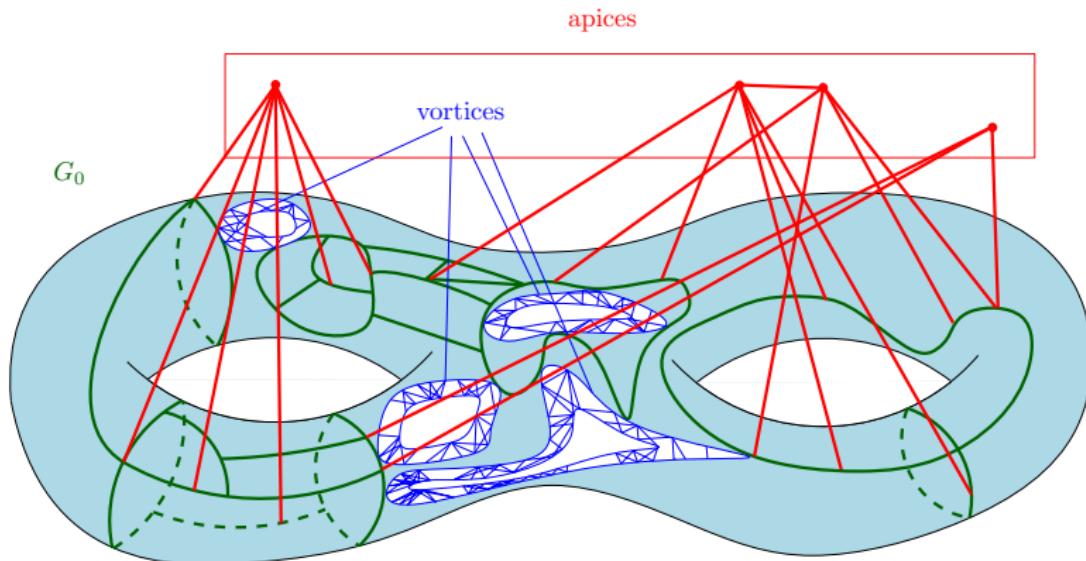
(a, b) -almost embeddability

Graph Minor Structure Theorem



(a, b)-almost embeddability

Graph Minor Structure Theorem

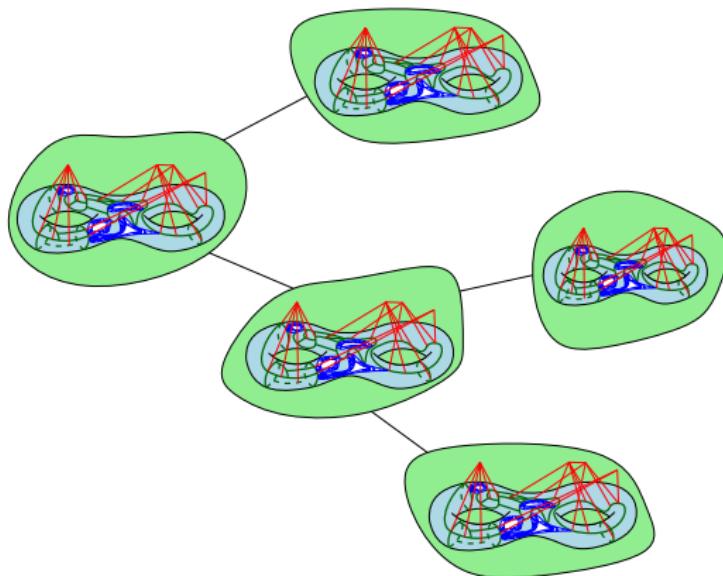


(a, b) -almost embeddability

Graph Minor Structure Theorem

Theorem (Graph Minor Structure Theorem, Robertson, Seymour, 2003)

For every fixed H , there exists a, k, g every H -minor free graph G has a tree-decomposition of adhesion at most k , whose torsos are (a, k) -quasi embeddable in a surface of genus g .



Graph Minor Structure Theorem

Theorem (Graph Minor Structure Theorem, Robertson, Seymour, 2003)

For every fixed H , there exists a, k, g every H -minor free graph G has a tree-decomposition of adhesion at most k , whose torsos are (a, k) -quasi embeddable in a surface of genus g .

Gorsky, Seweryn and Wiederrecht (2025) proved that one can get $k, a \in O(|H|^{2300})$ and $g \in O(|H|^2)$.

Proof overview

Theorem (Geniet, G. 2026+)

There exists a function $f_{\min} : \mathbb{N} \rightarrow \mathbb{N}$ such that for any graph H , any H -minor free graph G satisfies $\text{bn}(G) \leq f_{\min}(|H|)$.

Proof overview

To prove our result using GMST, one must then know how to deal with:

- Tree-decompositions of bounded adhesion.
- Graphs almost embeddable in a surface.

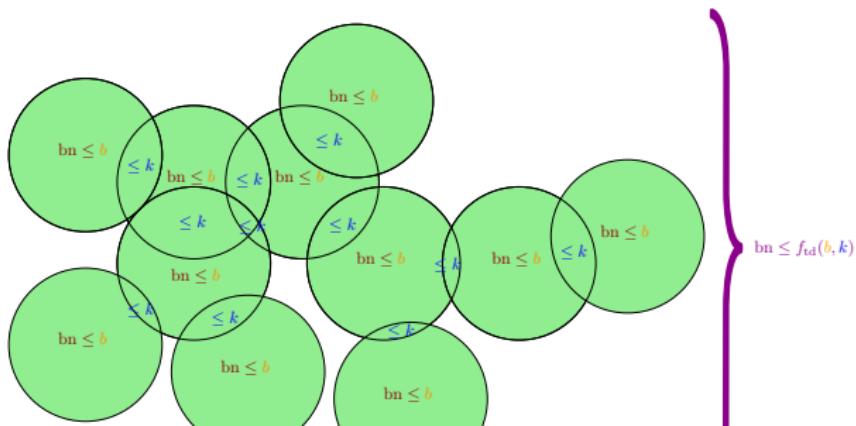
Proof overview

To prove our result using GMST, one must then know how to deal with:

- Tree-decompositions of bounded adhesion.
- Graphs almost embeddable in a surface.

Theorem (Geniet, G. 2026+)

*There exists $f_{\text{td}} : \mathbb{N}^2 \rightarrow \mathbb{N}$ such that for each **monotone** graph class \mathcal{G} with basis number at most b , every graph G with a tree-decomposition of adhesion at most k and whose torsos are all in \mathcal{G} satisfies $\text{bn}(G) \leq f_{\text{td}}(b, k)$.*



Proof overview

Theorem (Geniet, G. 2026+)

*There exists $f_{\text{td}} : \mathbb{N}^2 \rightarrow \mathbb{N}$ such that for each **monotone** graph class \mathcal{G} with basis number at most b , every graph G with a tree-decomposition of adhesion at most k and whose torsos are all in \mathcal{G} satisfies $\text{bn}(G) \leq f_{\text{td}}(b, k)$.*

Theorem (Geniet, G. 2026+)

There exists $f_{\text{alm}} : \mathbb{N}^3 \rightarrow \mathbb{N}$ such that every graph G which is (a, k) -almost-embeddable in a surface of genus g satisfies $\text{bn}(G) \leq f_{\text{alm}}(a, k, g)$.

Proof overview

To prove our result using GMST, one must then know how to deal with:

- Tree-decompositions of bounded adhesion.
- Graphs almost embeddable in a surface.

Theorem (Geniet, G. 2026+)

*There exists $f_{\text{td}} : \mathbb{N}^2 \rightarrow \mathbb{N}$ such that for each **monotone** graph class \mathcal{G} with basis number at most b , every graph G with a tree-decomposition of adhesion at most k and whose torsos are all in \mathcal{G} satisfies $\text{bn}(G) \leq f_{\text{td}}(b, k)$.*

Theorem (Geniet, G. 2026+)

There exists $f_{\text{alm}} : \mathbb{N}^3 \rightarrow \mathbb{N}$ such that every graph G which is (a, k) -almost-embeddable in a surface of genus g satisfies $\text{bn}(G) \leq f_{\text{alm}}(a, k, g)$.

Again, using [Mirafab, Morin, Yuditsky 2026+], $f_{\text{td}}, f_{\text{alm}}$ are polynomial.

Proof overview

Four main steps.

Proof overview

Four main steps.

★ **Step 1:** Prove a weak condition sufficient to preserve basis number boundedness when taking tree-decompositions.

Proof overview

Four main steps.

★ **Step 1:** Prove a weak condition sufficient to preserve basis number boundedness when taking tree-decompositions.

★ **Step 2:** Show the existence of f_{td} in the special case of path-decompositions.

→ This part has also been covered with improved bounds by Miraftab, Morin and Yuditsky (2026+).

Proof overview

Four main steps.

★ **Step 1:** Prove a weak condition sufficient to preserve basis number boundedness when taking tree-decompositions.

★ **Step 2:** Show the existence of f_{td} in the special case of path-decompositions.

→ This part has also been covered with improved bounds by Miraftab, Morin and Yuditsky (2026+).

★ **Step 3:** Show the existence of f_{td} in the general case.

→ Relies on adaptation of technical work from Bojańczyk and Pilipczuk (2016).

Proof overview

Four main steps.

★ **Step 1:** Prove a weak condition sufficient to preserve basis number boundedness when taking tree-decompositions.

★ **Step 2:** Show the existence of f_{td} in the special case of path-decompositions.

→ This part has also been covered with improved bounds by Miraftab, Morin and Yuditsky (2026+).

★ **Step 3:** Show the existence of f_{td} in the general case.

→ Relies on adaptation of technical work from Bojańczyk and Pilipczuk (2016).

★ **Step 4:** Show the existence of f_{alm} and concludes using the GMST.

Step 1

★ Step 1: Prove a weak condition sufficient to preserve basis number boundedness when taking tree-decompositions.

Step 1

★ Step 1: Prove a weak condition sufficient to preserve basis number boundedness when taking tree-decompositions.

Given (T, β) a family of paths \mathcal{P} **captures** the adhesions of (T, β) if for each u, v and each adhesion set A such that $u, v \in A$, there exists a uv -path $P_{u,v,A} \in \mathcal{P}$.

Theorem (Geniet, G. 2026)

Let (T, β) be a tree-decomposition of a graph G with adhesion k , whose torsos have basis number at most b , and for which there exists a family of paths \mathcal{P} with edge-congestion c **capturing the adhesions** of (T, β) . Then

$$\text{bn}(G) \leq (2c + 1)(b + 1).$$

Step 1

★ Step 1: Prove a weak condition sufficient to preserve basis number boundedness when taking tree-decompositions.

Given (T, β) a family of paths \mathcal{P} **captures** the adhesions of (T, β) if for each u, v and each adhesion set A such that $u, v \in A$, there exists a uv -path $P_{u,v,A} \in \mathcal{P}$.

Theorem (Geniet, G. 2026)

Let (T, β) be a tree-decomposition of a graph G with adhesion k , whose torsos have basis number at most b , and for which there exists a family of paths \mathcal{P} with edge-congestion c **capturing the adhesions** of (T, β) . Then

$$\text{bn}(G) \leq (2c + 1)(b + 1).$$

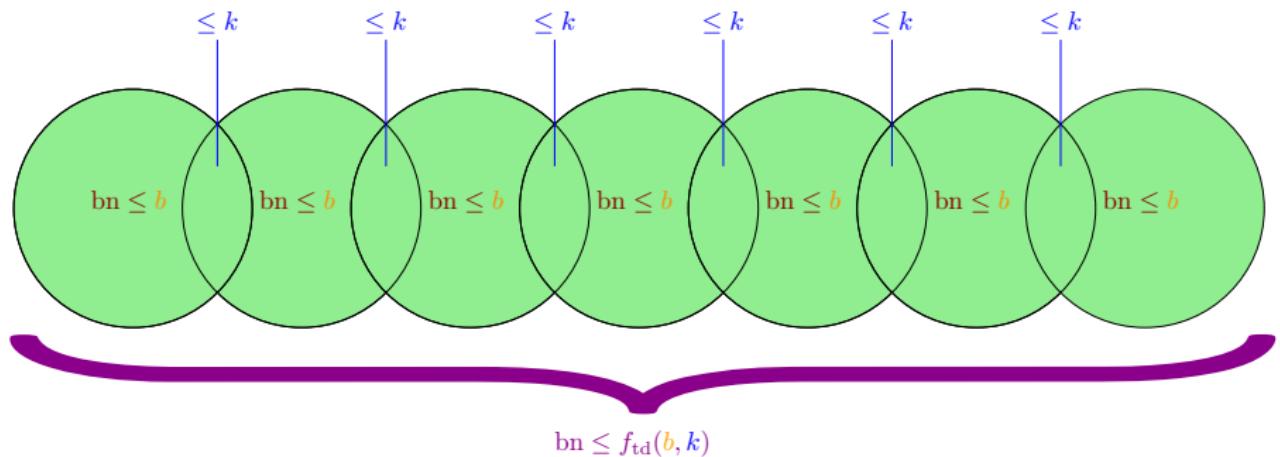
Problem: very weak condition.

Step 2

★ Step 2: Show the existence of f_{td} in the special case of path-decompositions.

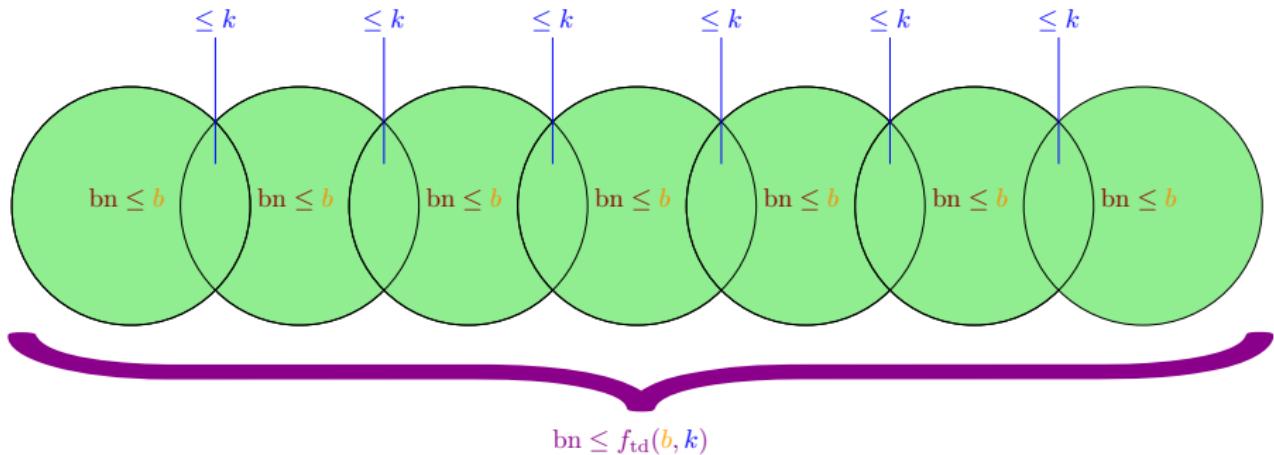
Step 2

★ Step 2: Show the existence of f_{td} in the special case of path-decompositions.



Step 2

★ Step 2: Show the existence of f_{td} in the special case of path-decompositions.



Our approach: uses Simon's Forest Factorisation Theorem. Gives

$$f_{\text{td}}(b, k) = b \cdot 2^{2^{O(k^2)}}.$$

Step 2

★ Step 2: Show the existence of f_{td} in the special case of **path-decompositions**.

Our approach: uses Simon's Forest Factorisation Theorem. Gives

$$f_{\text{td}}(b, k) = b \cdot 2^{2^{O(k^2)}}.$$

Theorem (Miraftab, Morin, Yuditsky 2026+)

Let $b, k \in \mathbb{N}$ and let G be a graph admitting a path-decomposition of adhesion k , in which each part has basis number at most b . Then

$$\text{bn}(G) \leq b + O(k \log^2 k).$$

Step 2

★ Step 2: Show the existence of f_{td} in the special case of **path-decompositions**.

Our approach: uses Simon's Forest Factorisation Theorem. Gives

$$f_{\text{td}}(b, k) = b \cdot 2^{2^{O(k^2)}}.$$

Theorem (Miraftab, Morin, Yuditsky 2026+)

Let $b, k \in \mathbb{N}$ and let G be a graph admitting a path-decomposition of adhesion k , in which each part has basis number at most b . Then

$$\text{bn}(G) \leq b + O(k \log^2 k).$$

Theorem (Miraftab, Morin, Yuditsky 2026+)

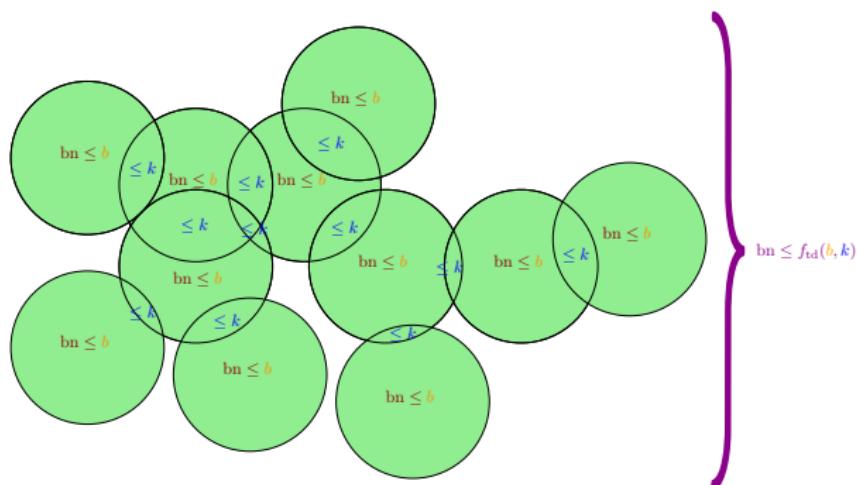
Any graph with pathwidth k has basis number at most $4k$.

Step 3

★ Step 3: Show the existence of f_{td} in the general case.

Theorem (Geniet, G. 2026+)

There exists $f_{\text{td}} : \mathbb{N}^2 \rightarrow \mathbb{N}$ such that for each **monotone** graph class \mathcal{G} with basis number at most b , every graph G with a tree-decomposition of adhesion at most k and whose torsos are all in \mathcal{G} satisfies $\text{bn}(G) \leq f_{\text{td}}(b, k)$.



Step 3: The bounded treewidth case

Lemma (Bojańczyk, Pilipczuk 2016 (simplified))

If G has a tree-decomposition (T, β) of width $\textcolor{blue}{k}$, then there exists $\textcolor{teal}{X} \subseteq V(T)$ such that the *quotient* $(T / \textcolor{teal}{X}, \beta_{\textcolor{teal}{X}})$ tree-decomposition satisfies:

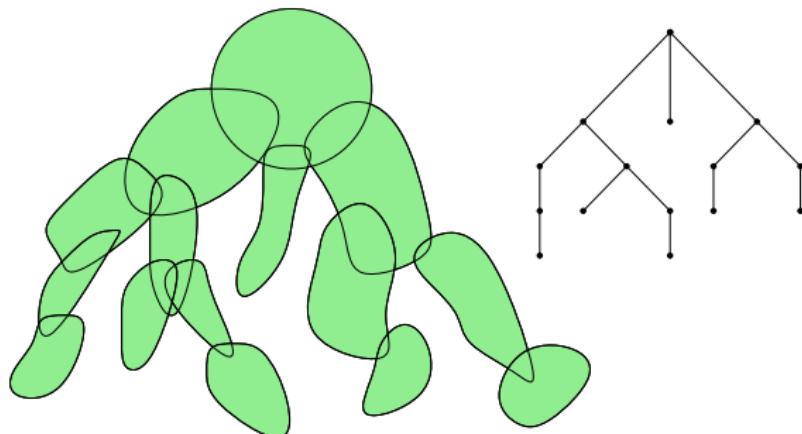
- every bag admits a path-decomposition of width at most $3\textcolor{blue}{k} + 1$;
- there exists a family of paths \mathcal{P} capturing the adhesions of $(T / \textcolor{teal}{X}, \beta_{\textcolor{teal}{X}})$ with edge-congestion $O(\textcolor{blue}{k}^4)$.

Step 3: The bounded treewidth case

Lemma (Bojańczyk, Pilipczuk 2016 (simplified))

If G has a tree-decomposition (T, β) of width k , then there exists $X \subseteq V(T)$ such that the quotient $(T/X, \beta_X)$ tree-decomposition satisfies:

- every bag admits a path-decomposition of width at most $3k + 1$;
- there exists a family of paths P capturing the adhesions of $(T/X, \beta_X)$ with edge-congestion $O(k^4)$.

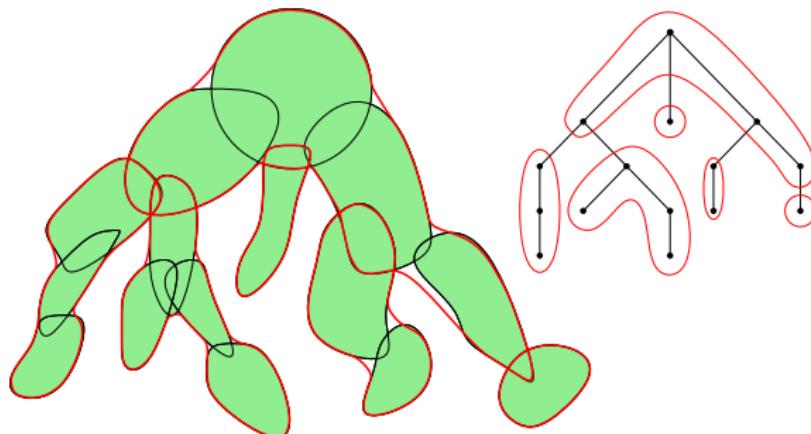


Step 3: The bounded treewidth case

Lemma (Bojańczyk, Pilipczuk 2016 (simplified))

If G has a tree-decomposition (T, β) of width k , then there exists $X \subseteq V(T)$ such that the quotient $(T/X, \beta_X)$ tree-decomposition satisfies:

- every bag admits a path-decomposition of width at most $3k + 1$;
- there exists a family of paths P capturing the adhesions of $(T/X, \beta_X)$ with edge-congestion $O(k^4)$.

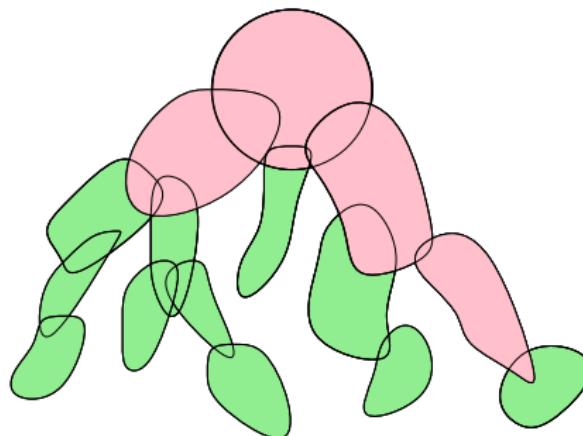


Step 3: The bounded treewidth case

Lemma (Bojańczyk, Pilipczuk 2016 (simplified))

If G has a tree-decomposition (T, β) of width k , then there exists $X \subseteq V(T)$ such that the quotient $(T/X, \beta_X)$ tree-decomposition satisfies:

- every bag admits a path-decomposition of width at most $3k + 1$;
- there exists a family of paths P capturing the adhesions of $(T/X, \beta_X)$ with edge-congestion $O(k^4)$.

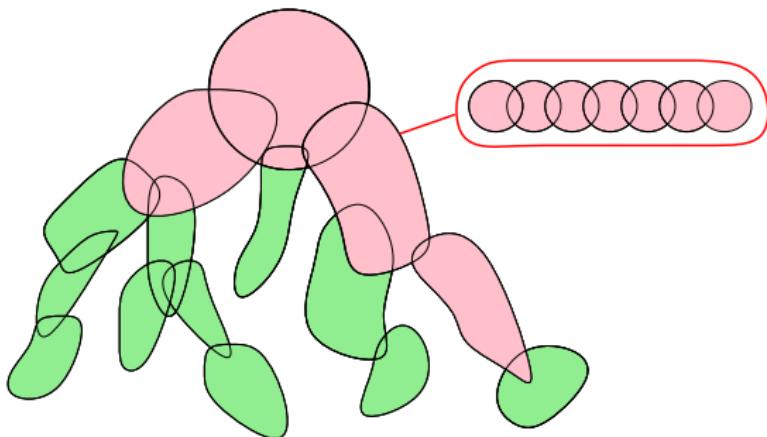


Step 3: The bounded treewidth case

Lemma (Bojańczyk, Pilipczuk 2016 (simplified))

If G has a tree-decomposition (T, β) of width k , then there exists $X \subseteq V(T)$ such that the quotient $(T/X, \beta_X)$ tree-decomposition satisfies:

- every bag admits a path-decomposition of width at most $3k + 1$;
- there exists a family of paths P capturing the adhesions of $(T/X, \beta_X)$ with edge-congestion $O(k^4)$.



Step 3: The bounded treewidth case

Lemma (Bojańczyk, Pilipczuk 2016 (simplified))

If G has a tree-decomposition (T, β) of width k , then there exists $X \subseteq V(T)$ such that the quotient $(T/X, \beta_X)$ tree-decomposition satisfies:

- every bag admits a path-decomposition of width at most $3k + 1$;
- there exists a family of paths P capturing the adhesions of $(T/X, \beta_X)$ with edge-congestion $O(k^4)$.

Theorem (Us, using Miraftab, Morin, Yuditsky 2026+)

For every $k \geq 0$, every graph with treewidth k has basis number $O(k^5)$.

Step 3: The general case

Lemma (Us, adapting Bojańczyk, Pilipczuk 2016 (simplified))

Let \mathcal{G} be a *monotone* graph class. If G has a tree-decomposition (T, β) of adhesion k whose *torsos* are in \mathcal{G} , then there exists $X \subseteq V(T)$ such that the quotient $(T/X, \beta_X)$ tree-decomposition satisfies:

- every bag admits a path-decomposition of adhesion at most $3k$, whose torsos are in \mathcal{G}^{+2k} ;
- there exists a family of paths \mathcal{P} capturing the adhesions of $(T/X, \beta_X)$ with edge-congestion $O(k^4)$.

Step 3: The general case

Lemma (Us, adapting Bojańczyk, Pilipczuk 2016 (simplified))

Let \mathcal{G} be a *monotone* graph class. If G has a tree-decomposition (T, β) of adhesion k whose *torsos* are in \mathcal{G} , then there exists $X \subseteq V(T)$ such that the quotient $(T/X, \beta_X)$ tree-decomposition satisfies:

- every bag admits a path-decomposition of adhesion at most $3k$, whose torsos are in \mathcal{G}^{+2k} ;
- there exists a family of paths \mathcal{P} capturing the adhesions of $(T/X, \beta_X)$ with edge-congestion $O(k^4)$.

Theorem (Us, using Miraftab, Morin, Yuditsky 2026+)

For each *monotone* graph class \mathcal{G} with basis number at most b , every graph G with a tree-decomposition of adhesion at most k and whose torsos are all in \mathcal{G} satisfies $\text{bn}(G) \leq (b + k \log^2 k)k^4$.

Step 4

★ Step 4: Show the existence of f_{alm} and concludes using the GMST.

Theorem (Geniet, G. 2026+)

There exists $f_{\text{alm}} : \mathbb{N}^3 \rightarrow \mathbb{N}$ such that every graph G which is (a, k) -almost-embeddable in a surface of genus g satisfies $\text{bn}(G) \leq f_{\text{alm}}(a, k, g)$.

Step 4

★ Step 4: Show the existence of f_{alm} and concludes using the GMST.

Theorem (Geniet, G. 2026+)

There exists $f_{\text{alm}} : \mathbb{N}^3 \rightarrow \mathbb{N}$ such that every graph G which is (a, k) -almost-embeddable in a surface of genus g satisfies $\text{bn}(G) \leq f_{\text{alm}}(a, k, g)$.

Technical, due to the non-monotone behaviour of bn .

Step 4

★ Step 4: Show the existence of f_{alm} and concludes using the GMST.

Theorem (Geniet, G. 2026+)

There exists $f_{\text{alm}} : \mathbb{N}^3 \rightarrow \mathbb{N}$ such that every graph G which is (a, k) -almost-embeddable in a surface of genus g satisfies $\text{bn}(G) \leq f_{\text{alm}}(a, k, g)$.

Technical, due to the non-monotone behaviour of bn .

Theorem (Eppstein (2000) + Mazoit (2012))

Let G be a graph embedded in a surface \mathbb{S} of genus g . Then

$$\text{tw}(G) = O(g \cdot \text{diam}(G^*)).$$

Conclusion

Theorem (Geniet, G. 2026+)

For any graph H , any H -minor free graph G satisfies

$$\text{bn}(G) = O(|H|^{32210}).$$

Conclusion

Theorem (Geniet, G. 2026+)

For any graph H , any H -minor free graph G satisfies

$$\text{bn}(G) = O(|H|^{32210}).$$

- Better bounds? $\log(|H|)^{O(1)}$ possible?

Conclusion

Theorem (Geniet, G. 2026+)

For any graph H , any H -minor free graph G satisfies

$$\text{bn}(G) = O(|H|^{32210}).$$

- Better bounds? $\log(|H|)^{O(1)}$ possible?
- More general cases? $\text{bn}(G) \leq f(\text{cw}(G))$?

Conclusion

Theorem (Geniet, G. 2026+)

For any graph H , any H -minor free graph G satisfies

$$\text{bn}(G) = O(|H|^{32210}).$$

- Better bounds? $\log(|H|)^{O(1)}$ possible?
- More general cases? $\text{bn}(G) \leq f(\text{cw}(G))$?
- Replace monotone by hereditary in our result on tree-decompositions?

Conclusion

Theorem (Geniet, G. 2026+)

For any graph H , any H -minor free graph G satisfies

$$\text{bn}(G) = O(|H|^{32210}).$$

- Better bounds? $\log(|H|)^{O(1)}$ possible?
- More general cases? $\text{bn}(G) \leq f(\text{cw}(G))$?
- Replace monotone by hereditary in our result on tree-decompositions?
- Infinite graphs?

Conclusion

Theorem (Geniet, G. 2026+)

For any graph H , any H -minor free graph G satisfies

$$\text{bn}(G) = O(|H|^{32210}).$$

- Better bounds? $\log(|H|)^{O(1)}$ possible?
- More general cases? $\text{bn}(G) \leq f(\text{cw}(G))$?
- Replace monotone by hereditary in our result on tree-decompositions?
- Infinite graphs?

Dziękuję bardzo!