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Cycle basis

Given G1, G2, their F2-sum G1 ⊕G2 is the graph
(V (G1) ∪ V (G2), E(G1)ΔE(G2)).
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Cycle basis

Given G1, G2, their F2-sum G1 ⊕G2 is the graph
(V (G1) ∪ V (G2), E(G1)ΔE(G2)).
A graph is even if all its vertices have even degree.
The cycle space (G) is the set of all even subgraphs of G (equiped with
⊕).

Remark
The set of cycles of a graph generates its cycle space.

A cycle basis of G is a set of cycles generating (G).
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MacLane’s planarity criterion

Remark
The set of facial cycles plan of a 2-connected plane graph forms a cycle
basis.
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MacLane’s planarity criterion

Remark
The set of facial cycles plan of a 2-connected plane graph forms a cycle
basis.

The edge-congestion of a cycle basis is the minimum k ⩾ 0 such that each
edge of G appears in at most k elements of .
The basis-number bn(G) of G is the minimum k such that G has a
cycle-basis with edge-congestion k.

Remark
If G is plane, plan has edge-congestion at most 2.

Theorem (MacLane’s planarity criterion (1937))

A graph G is planar if and only if bn(G) ⩽ 2.
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Some generalities about basis number

★ Why do we like basis number?
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For each e ∈ E(G), bn(G∕e) ⩽ bn(G).
For each e ∈ E(G), bn(G) ⩽ bn(G − e) + 1.
For each v ∈ V (G), bn(G) ⩽ bn(G − v) + 2.

★ Why do we NOT like basis number?
Not monotone under taking subgraph.

For each A ⊆ E(G), bn(G − A) ⩽ bn(G) + O(log2 |A|).
★ Why do we hate basis number?

Remark
For any k ∈ ℕ, there exists a graph G with bn(G) = 3, and a vertex
v ∈ V (G) such that bn(G − v) ⩾ k.
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Known results

Theorem (MacLane’s planarity criterion (1937))

A graph G is planar if and only if bn(G) ⩽ 2.

[Schmeichel, 1981] There exist graphs with arbitrary large basis
number.
[Schmeichel, 1981] Cliques have basis number at most 3, and bicliques
have basis number at most 4.
[Freedman, Hastings 2012] Every graph has basis number O(log2 n).
[Schmeichel, 1981] Every graph embeddable in an oriented surface of
genus g has basis number at most 2g + 2.
[Lehner, Miraftab 2025] Every graph embeddable in a surface of genus
g has basis number at most O(log2 g).
[Lehner, Miraftab 2025] Every toroidal graph has basis number at
most 3.
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Minors

A graph H is a minor of G if H can be obtained from G after performing
the following operations:

vertex deletions;
edge deletions;
edge contractions.
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Minors

A graph H is a minor of G if H can be obtained from G after performing
the following operations:

vertex deletions;
edge deletions;
edge contractions.

Planar
Bounded genus

Bounded treewidth Exclude a minor
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Main result

Theorem (Geniet, G. 2026+)

There exists a function fmin ∶ ℕ → ℕ such that for any graph H , any
H-minor free graph G satisfies bn(G) ⩽ fmin(|H|).
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There exists a function fmin ∶ ℕ → ℕ such that for any graph H , any
H-minor free graph G satisfies bn(G) ⩽ fmin(|H|).

Our original proof gave fmin(t) = 22
O(t2) . Combining our proof with

independant results of Miraftab, Morin and Yuditsky (2026+), we obtain
fmin(t) = O(tc) for some constant c ⩽ 32210.

Corollary
Let  be a monotone class of graphs. Then  has bounded basis number if
and only if all graphs in  exclude some fixed graph H as a minor.
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Tree-decompositions
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Tree-decompositions

Bags

Adhesion sets
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Tree-decompositions

Adhesion:= max size of adhesion sets

Width:= max size bag - 1
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Graph Minor Structure Theorem

G0

(a, b)-almost embeddability
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Graph Minor Structure Theorem

Theorem (Graph Minor Structure Theorem, Robertson, Seymour, 2003)

For every fixed H , there exists a, k, g every H-minor free graph G has a
tree-decomposition of adhesion at most k, whose torsos are (a, k)-quasi
embeddable in a surface of genus g.
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Graph Minor Structure Theorem

Theorem (Graph Minor Structure Theorem, Robertson, Seymour, 2003)

For every fixed H , there exists a, k, g every H-minor free graph G has a
tree-decomposition of adhesion at most k, whose torsos are (a, k)-quasi
embeddable in a surface of genus g.

Gorsky, Seweryn and Wiederrecht (2025) proved that one can get
k, a ∈ O(|H|

2300) and g ∈ O(|H|

2).
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Proof overview

Theorem (Geniet, G. 2026+)

There exists a function fmin ∶ ℕ → ℕ such that for any graph H , any
H-minor free graph G satisfies bn(G) ⩽ fmin(|H|).
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Proof overview

To prove our result using GMST, one must then know how to deal with:
Tree-decompositions of bounded adhesion.
Graphs almost embeddable in a surface.
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Theorem (Geniet, G. 2026+)

There exists ftd ∶ ℕ2 → ℕ such that for each monotone graph class  with
basis number at most b, every graph G with a tree-decomposition of
adhesion at most k and whose torsos are all in  satisfies bn(G) ⩽ ftd(b, k).

Theorem (Geniet, G. 2026+)

There exists falm ∶ ℕ3 → ℕ such that every graph G which is
(a, k)-almost-embeddable in a surface of genus g satisfies
bn(G) ⩽ falm(a, k, g).

Again, using [Miraftab, Morin, Yuditsky 2026+], ftd, falm are polynomial.
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Proof overview

Four main steps.

★ Step 1: Prove a weak condition sufficient to preserve basis number
boundedness when taking tree-decompositions.
★ Step 2: Show the existence of ftd in the special case of
path-decompositions.
→ This part has also been covered with improved bounds by Miraftab,
Morin and Yuditsky (2026+).
★ Step 3: Show the existence of ftd in the general case.
→ Relies on adaptation of technical work from Bojańczyk and Pilipczuk
(2016).
★ Step 4: Show the existence of falm and concludes using the GMST.
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Step 1

★ Step 1: Prove a weak condition sufficient to preserve basis number
boundedness when taking tree-decompositions.

Given (T , �) a family of paths  captures the adhesions of (T , �) if for each
u, v and each adhesion set A such that u, v ∈ A, there exists a uv-path
Pu,v,A ∈  .

Theorem (Geniet, G. 2026)

Let (T , �) be a tree-decomposition of a graph G with adhesion k, whose
torsos have basis number at most b, and for which there exists a family of
paths  with edge-congestion c capturing the adhesions of (T , �). Then

bn(G) ⩽ (2c + 1)(b + 1).

Problem: very weak condition.
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Step 2

★ Step 2: Show the existence of ftd in the special case of
path-decompositions.
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Let b, k ∈ ℕ and let G be a graph admitting a path-decomposition of
adhesion k, in which each part has basis number at most b. Then

bn(G) ⩽ b + O(k log2 k).

Theorem (Miraftab, Morin, Yuditsky 2026+)

Any graph with pathwidth k has basis number at most 4k.
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Step 3

★ Step 3: Show the existence of ftd in the general case.

Theorem (Geniet, G. 2026+)

There exists ftd ∶ ℕ2 → ℕ such that for each monotone graph class  with
basis number at most b, every graph G with a tree-decomposition of
adhesion at most k and whose torsos are all in  satisfies bn(G) ⩽ ftd(b, k).

bn ≤ b

bn ≤ b

bn ≤ b

bn ≤ b

bn ≤ b

bn ≤ b

bn ≤ b

bn ≤ b

bn ≤ b

bn ≤ b

bn ≤ b

bn ≤ b
≤ k

≤ k

≤ k

≤ k
≤ k

≤ k
≤ k≤ k

≤ k≤ k

bn ≤ ftd(b, k)

{
≤ k

14 / 18



Step 3: The bounded treewidth case

Lemma (Bojańczyk, Pilipczuk 2016 (simplified))

If G has a tree-decomposition (T , �) of width k, then there exists
X ⊆ V (T ) such that the quotient (T ∕X, �X) tree-decomposition satisfies:

every bag admits a path-decomposition of width at most 3k + 1;
there exists a family of paths  capturing the adhesions of (T ∕X, �X)
with edge-congestion O(k4).
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Theorem (Us, using Miraftab, Morin, Yuditsky 2026+)

For every k ⩾ 0, every graph with treewidth k has basis number O(k5).
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Step 3: The general case

Lemma (Us, adapting Bojańczyk, Pilipczuk 2016 (simplified))
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quotient (T ∕X, �X) tree-decomposition satisfies:

every bag admits a path-decomposition of adhesion at most 3k, whose
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quotient (T ∕X, �X) tree-decomposition satisfies:

every bag admits a path-decomposition of adhesion at most 3k, whose
torsos are in +2k;
there exists a family of paths  capturing the adhesions of (T ∕X, �X)
with edge-congestion O(k4).

Theorem (Us, using Miraftab, Morin, Yuditsky 2026+)

For each monotone graph class  with basis number at most b, every
graph G with a tree-decomposition of adhesion at most k and whose torsos
are all in  satisfies bn(G) ⩽ (b + k log2 k)k4.
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Step 4

★ Step 4: Show the existence of falm and concludes using the GMST.

Theorem (Geniet, G. 2026+)

There exists falm ∶ ℕ3 → ℕ such that every graph G which is
(a, k)-almost-embeddable in a surface of genus g satisfies
bn(G) ⩽ falm(a, k, g).

Technical, due to the non-monotone behavious of bn.

Theorem (Eppstein (2000) + Mazoit (2012))

Let G be a graph embedded in a surface S of genus g. Then

tw(G) = O(g ⋅ diam(G∗)).

17 / 18



Step 4

★ Step 4: Show the existence of falm and concludes using the GMST.

Theorem (Geniet, G. 2026+)

There exists falm ∶ ℕ3 → ℕ such that every graph G which is
(a, k)-almost-embeddable in a surface of genus g satisfies
bn(G) ⩽ falm(a, k, g).

Technical, due to the non-monotone behavious of bn.

Theorem (Eppstein (2000) + Mazoit (2012))

Let G be a graph embedded in a surface S of genus g. Then

tw(G) = O(g ⋅ diam(G∗)).

17 / 18



Step 4

★ Step 4: Show the existence of falm and concludes using the GMST.

Theorem (Geniet, G. 2026+)

There exists falm ∶ ℕ3 → ℕ such that every graph G which is
(a, k)-almost-embeddable in a surface of genus g satisfies
bn(G) ⩽ falm(a, k, g).

Technical, due to the non-monotone behavious of bn.

Theorem (Eppstein (2000) + Mazoit (2012))

Let G be a graph embedded in a surface S of genus g. Then

tw(G) = O(g ⋅ diam(G∗)).

17 / 18



Conclusion

Theorem (Geniet, G. 2026+)

For any graph H , any H-minor free graph G satisfies

bn(G) = O(|H|

32210).

Better bounds? log(|H|)O(1) possible?
More general cases? bn(G) ⩽ f (cw(G))?
Replace monotone by hereditary in our result on tree-decompositions?
Infinite graphs?

Dziękuję bardzo!
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