Structural and geometrical properties of highly symmetric graphs

Ugo Giocanti

Under the supervision of Louis Esperet and Stéphan Thomassé Université Grenoble Alpes, Laboratoire G-SCOP, France

> PhD Thesis defense 9th July 2024

- [Maschke 1896] Full list of all finite planar Cayley graphs.

- [Maschke 1896] Full list of all finite planar Cayley graphs.

- [Maschke 1896] Full list of all finite planar Cayley graphs.

- [Maschke 1896] Full list of all finite planar Cayley graphs.

+ 15 others

- [Maschke 1896] Full list of all finite planar Cayley graphs.
- [Wilkie 1966], [MacBeath 1967], [Zieschang, Volgt, Coldeway 1980]: characterization of locally finite planar Cayley graphs with a vertex-accumulation-free embedding.

- [Maschke 1896] Full list of all finite planar Cayley graphs.
- [Wilkie 1966], [MacBeath 1967], [Zieschang, Volgt, Coldeway 1980]: characterization of locally finite planar Cayley graphs with a vertex-accumulation-free embedding.

Image source: Yann Ollivier. A primer to geometric group theory. http://www.yann-ollivier.org/maths/primer.php

- [Droms 2006] Decomposition method to construct all locally finite planar Cayley graphs.

- [Droms 2006] Decomposition method to construct all locally finite planar Cayley graphs.

Plan of the presentation

In this presentation:

• Characterizations of classes of symmetric graphs defined by more general geometric properties.

• Connections with problems from symbolic dynamics.

G: (connected) graph, countable vertex set, locally finite.

- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.

• [Robertson, Seymour 2003] "If a finite graph *G* excludes some fixed minor *H*, then *G* has a tree-decomposition where each torso almost embeds in a surface of bounded genus."

- [Robertson, Seymour 2003] "If a finite graph *G* excludes some fixed minor *H*, then *G* has a tree-decomposition where each torso almost embeds in a surface of bounded genus."
- [Kříž, Thomas 1990] "Extends to infinite graphs excluding some finite minor."

- [Robertson, Seymour 2003] "If a finite graph *G* excludes some fixed minor *H*, then *G* has a tree-decomposition where each torso almost embeds in a surface of bounded genus."
- [Kříž, Thomas 1990] "Extends to infinite graphs excluding some finite minor."
- [Diestel, Thomas 1999] "A similar result for graphs excluding the countable clique K_∞ as a minor."

- [Robertson, Seymour 2003] "If a finite graph *G* excludes some fixed minor *H*, then *G* has a tree-decomposition where each torso almost embeds in a surface of bounded genus."
- [Kříž, Thomas 1990] "Extends to infinite graphs excluding some finite minor."
- [Diestel, Thomas 1999] "A similar result for graphs excluding the countable clique K_{∞} as a minor."
- \rightarrow None of these results are canonical.

G is quasi-4-connected if:

- G is 3-connected;
- the only separations of order 3 in G are between a single vertex and the remainder of the graph.

G is quasi-4-connected if:

- *G* is 3-connected;
- the only separations of order 3 in G are between a single vertex and the remainder of the graph.

G is quasi-4-connected if:

- G is 3-connected;
- the only separations of order 3 in G are between a single vertex and the remainder of the graph.

Theorem (Thomassen 1992)

If G is locally finite, quasi-transitive, quasi-4-connected and excludes K_{∞} as a minor, then G is either planar or it has finite treewidth.

G is quasi-4-connected if:

- *G* is 3-connected;
- the only separations of order 3 in G are between a single vertex and the remainder of the graph.

Theorem (Thomassen 1992)

If G is locally finite, quasi-transitive, quasi-4-connected and excludes K_{∞} as a minor, then G is either planar or it has finite treewidth.

Corollary (Thomassen 1992)

If G is locally finite, quasi-4-connected and quasi-transitive, and if G has every finite graph as a minor, then G has K_{∞} as a minor.

 \rightarrow Question (Thomassen 1992): Can we drop the quasi-4-connectivity condition?

Minor excluded quasi-transitive graphs

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite/planar))

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most k whose torsos are either finite or quasi-transitive 3-connected planar minors of G.

Minor excluded quasi-transitive graphs

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.

Simple example

Simple example

. . .

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.

Corollary

If G is locally finite, quasi-transitive and has every finite graph as a minor, then it also has K_{∞} as a minor.

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.

Corollary

If G is locally finite, quasi-transitive and has every finite graph as a minor, then it also has K_{∞} as a minor.

Proof based on results and methods from [Grohe '16] and [Carmesin, Hamann, Miraftab '22].

Beyond minor exclusion

Beyond minor exclusion

Two natural questions arise when given a finite set of Wang tiles:

- Does there exist a valid Wang tiling?
- If yes, does there exist a periodic one?

 $(\Gamma, \cdot) := (\mathbb{Z}^2, +)$ a := (1, 0), b := (0, 1)

Local rules:

 \rightarrow Notions generalize to arbitrary Cayley graphs.

Domino problem on $Cay(\Gamma, S)$:

Input: a finite set of colors A and a finite set \mathcal{R} of local rules.

Question: Is there a coloring $c : \operatorname{Cay}(\Gamma, S) \to A$ respecting \mathcal{R} ?

Domino problem on $Cay(\Gamma, S)$:

Input: a finite set of colors A and a finite set \mathcal{R} of local rules.

Question: Is there a coloring $c : \operatorname{Cay}(\Gamma, S) \to A$ respecting \mathcal{R} ?

- Decidable when $Cay(\Gamma, S)$ has finite treewidth;
- [Berger 1966] Undecidable on \mathbb{Z}^2 ;

Domino problem on $Cay(\Gamma, S)$:

Input: a finite set of colors A and a finite set \mathcal{R} of local rules.

Question: Is there a coloring $c : Cay(\Gamma, S) \to A$ respecting \mathcal{R} ?

- Decidable when $Cay(\Gamma, S)$ has finite treewidth;
- [Berger 1966] Undecidable on \mathbb{Z}^2 ;

Conjecture (Ballier, Stein 2018)

The domino problem on $Cay(\Gamma, S)$ is decidable if and only if $Cay(\Gamma, S)$ has finite treewidth.

Domino problem on $Cay(\Gamma, S)$:

Input: a finite set of colors A and a finite set \mathcal{R} of local rules. Question: Is there a coloring $c : Cay(\Gamma, S) \to A$ respecting \mathcal{R} ?

- Decidable when $Cay(\Gamma, S)$ has finite treewidth;
- [Berger 1966] Undecidable on \mathbb{Z}^2 ;

Conjecture (Ballier, Stein 2018)

The domino problem on $Cay(\Gamma, S)$ is decidable if and only if $Cay(\Gamma, S)$ has finite treewidth.

Intuition for graph theorists: bidimensionality \rightarrow for every Cayley graph G:

- either G has bounded treewidth,
- or G has the infinite square grid as a minor.

Domino problem on $Cay(\Gamma, S)$:

Input: a finite set of colors A and a finite set \mathcal{R} of local rules. Question: Is there a coloring $c : Cay(\Gamma, S) \to A$ respecting \mathcal{R} ?

- Decidable when $Cay(\Gamma, S)$ has finite treewidth;
- [Berger 1966] Undecidable on ℤ²;

Conjecture (Ballier, Stein 2018)

The domino problem on $Cay(\Gamma, S)$ is decidable if and only if $Cay(\Gamma, S)$ has finite treewidth.

Similar conjecture (Carroll, Penland 2015) aiming at characterizing Cayley graphs of bounded pathwidth.

Corollary (Esperet, G., Legrand Duchesne, 2023)

Both Ballier-Stein and Carroll-Penland conjectures are true for Cayley graphs excluding K_{∞} as a minor.

Corollary (MacManus 2023)

Both Ballier-Stein and Carroll-Penland conjectures are true for Cayley graphs that are quasi-isometric to some planar graph.

• Dynamics of SFTs corresponding to usual graph properties? e.g. proper colorings, matchings, orientations...

• Distinguishing weak and strong aperiodicity.

Thank you for your attention.