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Cayley graphs

(Γ, ⋅): group, S: finite set of generators. Cay(Γ, S) ∶ graph with vertex set
Γ and adjacencies {x, x ⋅ a} for every x ∈ Γ, a ∈ S.
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Cayley graphs

(Γ, ⋅): group, S: finite set of generators. Cay(Γ, S) ∶ graph with vertex set
Γ and adjacencies {x, x ⋅ a} for every x ∈ Γ, a ∈ S.

(Γ, ·) := (Z2,+)
a := (1, 0), b := (0, 1)
c := (1, 1), d := (1,−1) 2 / 19



Planar groups

- [Maschke 1896] Full list of all finite planar Cayley graphs.
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Planar groups

- [Maschke 1896] Full list of all finite planar Cayley graphs.

+ 15 others
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Planar groups

- [Maschke 1896] Full list of all finite planar Cayley graphs.
- [Wilkie 1966], [MacBeath 1967], [Zieschang, Volgt, Coldeway 1980]:
characterization of locally finite planar Cayley graphs with a
vertex-accumulation-free embedding.
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Planar groups

- [Maschke 1896] Full list of all finite planar Cayley graphs.
- [Wilkie 1966], [MacBeath 1967], [Zieschang, Volgt, Coldeway 1980]:
characterization of locally finite planar Cayley graphs with a
vertex-accumulation-free embedding.

Image source: Yann Ollivier. A primer to geometric group theory.
http://www.yann-ollivier.org/maths/primer.php
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Planar groups

- [Droms 2006] Decomposition method to construct all locally finite planar
Cayley graphs.
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Planar groups

- [Droms 2006] Decomposition method to construct all locally finite planar
Cayley graphs.
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Plan of the presentation

In this presentation:
Characterizations of classes of symmetric graphs defined by more
general geometric properties.

Planar
Bounded genus

Bounded treewidth Exclude a minor

Cayley graphs

Transitive graphs

Quasi-transitive graphs

Connections with problems from symbolic dynamics.
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Quasi-transitive graphs

G: (connected) graph, countable vertex set, locally finite.
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Minors

A graph H is a minor of G if H can be obtained from G after performing
the following operations:

vertex deletions;
edge deletions;
edge contractions.
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Tree-decompositions
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Tree-decompositions

Bags

Adhesion sets
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Graph Minor Structure Theorem

[Robertson, Seymour 2003] “If a finite graph G excludes some fixed
minor H , then G has a tree-decomposition where each torso almost
embeds in a surface of bounded genus.”

[Kříž, Thomas 1990] “Extends to infinite graphs excluding some finite
minor.”
[Diestel, Thomas 1999] “A similar result for graphs excluding the
countable clique K∞ as a minor.”

→ None of these results are canonical.
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Minors in quasi-4-connected graphs

G is quasi-4-connected if:
G is 3-connected;
the only separations of order 3 in G are between a single vertex and
the remainder of the graph.
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Minors in quasi-4-connected graphs

G is quasi-4-connected if:
G is 3-connected;
the only separations of order 3 in G are between a single vertex and
the remainder of the graph.

Theorem (Thomassen 1992)

If G is locally finite, quasi-transitive, quasi-4-connected and excludes K∞ as
a minor, then G is either planar or it has finite treewidth.

Corollary (Thomassen 1992)

If G is locally finite, quasi-4-connected and quasi-transitive, and if G has
every finite graph as a minor, then G has K∞ as a minor.

→ Question (Thomassen 1992): Can we drop the quasi-4-connectivity
condition?
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Minor excluded quasi-transitive graphs

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite/planar))

Let G be a quasi-transitive locally finite graph excluding K∞ as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T ,), of adhesion at most k whose torsos are either
finite or quasi-transitive 3-connected planar minors of G.
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Minor excluded quasi-transitive graphs

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding K∞ as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T ,), of adhesion at most 3 whose torsos are
quasi-transitive minors of G and have either treewidth at most k or are
3-connected planar.
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Simple example
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Simple example
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Minor excluded quasi-transitive graphs

Theorem (Esperet, G., Legrand-Duchesne 2023 (finite treewidth/planar))

Let G be a quasi-transitive locally finite graph excluding K∞ as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T ,), of adhesion at most 3 whose torsos are
quasi-transitive minors of G and have either treewidth at most k or are
3-connected planar.

Corollary
If G is locally finite, quasi-transitive and has every finite graph as a minor,
then it also has K∞ as a minor.

Proof based on results and methods from [Grohe ’16] and [Carmesin,
Hamann, Miraftab ’22].
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Beyond minor exclusion

k-planar for some k ∈ N

Quasi-isometric to some planar graph

K∞-minor free

Planar Bounded treewidth

Finite

=? =?

(
)

(

(

Excluding a finite asymptotic minorExcluding a countable asymptotic minor

Quasi-isometric to some K∞-minor free graph

=?

[ Esperet, G. ’23 ]

[ MacManus ’23 ]

[ Georgakopoulos, Papasoglou ’23 ]

Relations between some classes of locally finite quasi-transitive graphs defined by
geometric properties.
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Beyond minor exclusion

=? =?

(
)

(

(

=?

Quasi-isometric invariant

Not a quasi-isometric invariant

Excluding a finite asymptotic minorExcluding a countable asymptotic minor

Quasi-isometric to some K∞-minor free graph k-planar for some k ∈ N

Quasi-isometric to some planar graph

K∞-minor free

Planar Bounded treewidth

Finite

Relations between some classes of locally finite quasi-transitive graphs defined by
geometric properties.
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Wang tilings
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Wang tilings

Two natural questions arise when given a finite set of Wang tiles:
Does there exist a valid Wang tiling?
If yes, does there exist a periodic one?
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Wang tilings

Colors:

(Γ, ·) := (Z2,+)

a := (1, 0), b := (0, 1)
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Wang tilings

Colors:

(Γ, ·) := (Z2,+)

a := (1, 0), b := (0, 1)

Local rules:

a

1Γ a

a

1Γ a

a

1Γ a
, , , . . .

b , b , b , . . .

1Γ 1Γ 1Γ
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Wang tilings

Colors:

(Γ, ·) := (Z2,+)

a := (1, 0), b := (0, 1)

Local rules:

a

1Γ a

a

1Γ a

a

1Γ a
, , , . . .

b , b , b , . . .

1Γ 1Γ 1Γ

b b b

→ Notions generalize to arbitrary Cayley graphs.
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Domino problem on groups

Domino problem on Cay(Γ, S):
Input: a finite set of colors A and a finite set  of local rules.
Question: Is there a coloring c ∶ Cay(Γ, S)→ A respecting ?
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Question: Is there a coloring c ∶ Cay(Γ, S)→ A respecting ?

Decidable when Cay(Γ, S) has finite treewidth;
[Berger 1966] Undecidable on ℤ2;

Conjecture (Ballier, Stein 2018)

The domino problem on Cay(Γ, S) is decidable if and only if Cay(Γ, S) has
finite treewidth.

Intuition for graph theorists: bidimensionality → for every Cayley graph G:
either G has bounded treewidth,
or G has the infinite square grid as a minor.
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Domino problem on groups

Domino problem on Cay(Γ, S):
Input: a finite set of colors A and a finite set  of local rules.
Question: Is there a coloring c ∶ Cay(Γ, S)→ A respecting ?

Decidable when Cay(Γ, S) has finite treewidth;
[Berger 1966] Undecidable on ℤ2;

Conjecture (Ballier, Stein 2018)

The domino problem on Cay(Γ, S) is decidable if and only if Cay(Γ, S) has
finite treewidth.

Similar conjecture (Carroll, Penland 2015) aiming at characterizing Cayley
graphs of bounded pathwidth.
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The minor excluded case

Corollary (Esperet, G., Legrand Duchesne, 2023)

Both Ballier-Stein and Carroll-Penland conjectures are true for Cayley
graphs excluding K∞ as a minor.

Corollary (MacManus 2023)

Both Ballier-Stein and Carroll-Penland conjectures are true for Cayley
graphs that are quasi-isometric to some planar graph.
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Related questions (work in progress)

Dynamics of SFTs corresponding to usual graph properties? e.g.
proper colorings, matchings, orientations...

. . .

. . .. . . . . . . . .. . . . . . . . .. . . . . .

Distinguishing weak and strong aperiodicity.
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Thank you for your attention.
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