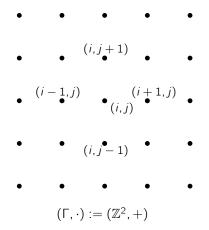
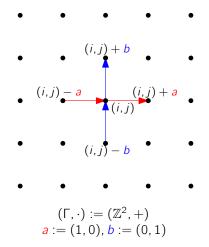
Coarse geometry of quasi-transitive graphs.

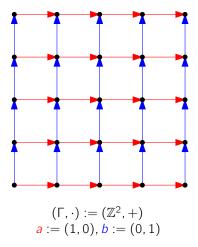
Ugo Giocanti Joint work with Louis Esperet

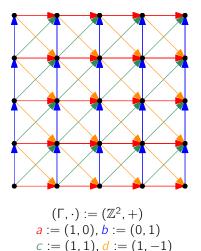
Jagiellonian University

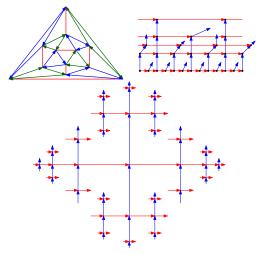
10th Polish Combinatorial Conference.







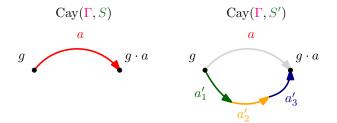




How are $Cay(\Gamma, S)$ and $Cay(\Gamma, S')$ related for two different finite generating sets S, S'?

Cayley graphs and quasi-isometries

How are $Cay(\Gamma, S)$ and $Cay(\Gamma, S')$ related for two different finite generating sets S, S'?



How are $Cay(\Gamma, S)$ and $Cay(\Gamma, S')$ related for two different finite generating sets S, S'?

Two (possibly infinite) graphs G, H are quasi-isometric to each other if there exist $f : V(G) \rightarrow V(H)$ and constants A, B, C > 0 such that:

$$\forall x, y \in V(G), \frac{1}{A}d_G(x, y) - \mathbf{B} \leq d_H(f(x), f(y))) \leq Ad_G(x, y) + \mathbf{B},$$

(2) for every $y \in V(H)$, there exists $x \in V(G)$ such that $d_H(y, f(x)) \leq C$.

Cayley graphs and quasi-isometries

How are $Cay(\Gamma, S)$ and $Cay(\Gamma, S')$ related for two different finite generating sets S, S'?

Two (possibly infinite) graphs G, H are quasi-isometric to each other if there exist $f : V(G) \rightarrow V(H)$ and constants A, B, C > 0 such that: (1)

$$\forall x, y \in V(G), \frac{1}{A}d_G(x, y) - \mathbf{B} \leq d_H(f(x), f(y))) \leq Ad_G(x, y) + \mathbf{B},$$

(2) for every $y \in V(H)$, there exists $x \in V(G)$ such that $d_H(y, f(x)) \leq C$. Geometric invariant := property preserved under taking quasi-isometries.

Remark

 $Cay(\Gamma, S)$ and $Cay(\Gamma, S')$ are quasi-isometric to each other.

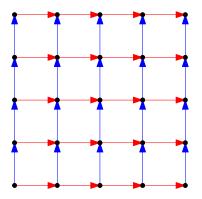
NOT geometric invariants:

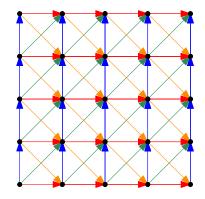
- Bounded degree
- Planarity
- Minor exclusion

Geometric invariants

NOT geometric invariants:

- Bounded degree
- Planarity
- Minor exclusion





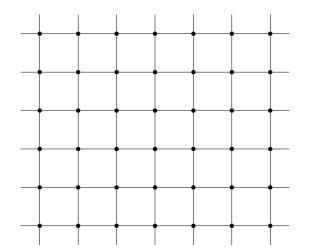
NOT geometric invariants:

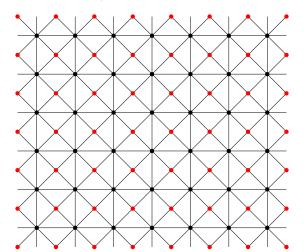
- Bounded degree
- Planarity
- Minor exclusion

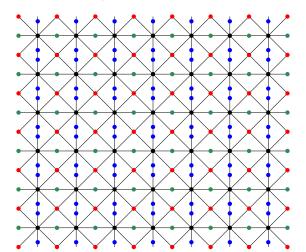
Some geometric invariants:

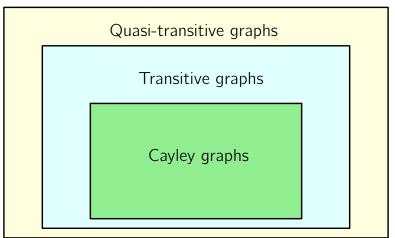
- Finite diameter
- Number of ends
- Being hyperbolic
- Having finite treewidth (for graphs of bounded degree).

G: (connected) graph, countable vertex set, bounded degree.



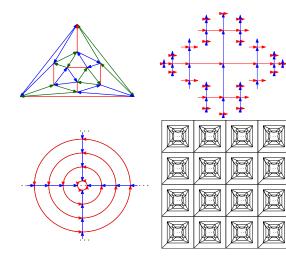






Minor excluded quasi-transitive graphs

• [From Maschke 1896 to Droms 2006] (with many other): full description of all bounded degree planar quasi-transitive graphs.



Minor excluded quasi-transitive graphs

- [From Maschke 1896 to Droms 2006] (with many other): full description of all bounded degree planar quasi-transitive graphs.
- [Esperet, G., Legrand-Duchesne 2023] Description extended to bounded degree minor-excluded quasi-transitive graphs.

Minor excluded quasi-transitive graphs

- [From Maschke 1896 to Droms 2006] (with many other): full description of all bounded degree planar quasi-transitive graphs.
- [Esperet, G., Legrand-Duchesne 2023] Description extended to bounded degree minor-excluded quasi-transitive graphs.
- [MacManus 2023] Description extended to bounded degree quasi-transitive graphs being quasi-isometric to some planar graph.

Theorem (Esperet, G., 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar graph of bounded degree.

Theorem (Esperet, G., 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar graph of bounded degree.

Theorem (Hamann, 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar quasi-transitive graph of bounded degree.

Theorem (Esperet, G., 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar graph of bounded degree.

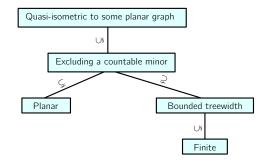
Theorem (Hamann, 2024)

Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar quasi-transitive graph of bounded degree.

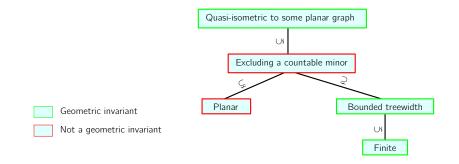
Theorem (MacManus, 2024)

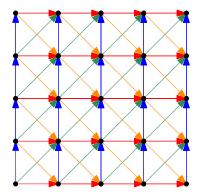
Every bounded degree quasi-transitive graph excluding a minor is quasi-isometric to some planar Cayley graph of bounded degree.

Minors and quasi-isometries to planar graphs



Minors and quasi-isometries to planar graphs





Theorem (Esperet, G. 2024)

The property of being k-planar for some $k \in \mathbb{N}$ is a geometric invariant for bounded degree graphs.

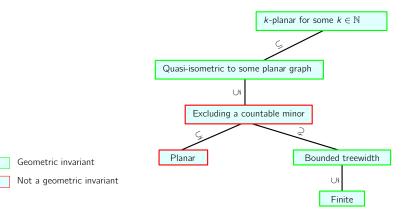
Theorem (Esperet, G. 2024)

The property of being k-planar for some $k \in \mathbb{N}$ is a geometric invariant for bounded degree graphs.

Corollary

Every graph of bounded degree which is quasi-isometric to a planar graph is k-planar for some $k \in \mathbb{N}$.

Beyond planarity



Theorem (Esperet, G. 2024)

The property of being k-planar for some $k \in \mathbb{N}$ is a geometric invariant for bounded degree graphs.

Corollary

Every graph of bounded degree which is quasi-isometric to a planar graph is k-planar for some $k \in \mathbb{N}$.

Theorem (Esperet, G. 2024)

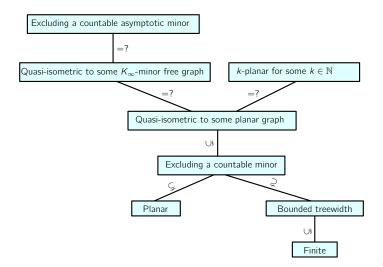
The property of being k-planar for some $k \in \mathbb{N}$ is a geometric invariant for bounded degree graphs.

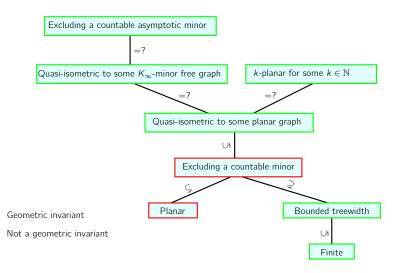
Corollary

Every graph of bounded degree which is quasi-isometric to a planar graph is k-planar for some $k \in \mathbb{N}$.

Conjecture (Georgakopoulos, Papasoglou 2023)

Let G be a bounded degree quasi-transitive graph. Then G is quasi-isometric to a planar graph if and only if it is k-planar for some $k \in \mathbb{N}$.





Thank you for your attention.