# Twin-width IV: ordered graphs and matrices

Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk

Université Grenoble Alpes, Laboratoire G-SCOP

CoA 2022, Paris

CoA 2022, Paris

#### Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs  $(G = G_n, G_{n-1}, \dots, G_1)$  where  $G_{i-1}$  is obtained by identifying two vertices of  $G_i$ .

イロト 不得下 イヨト イヨト 二日

#### Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs  $(G = G_n, G_{n-1}, \dots, G_1)$  where  $G_{i-1}$  is obtained by identifying two vertices of  $G_i$ .  $V(G_i) \leftrightarrow$  partition of V(G).

イロト 不得下 イヨト イヨト 二日

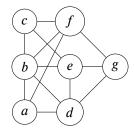
CoA 2022, Paris

#### Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs

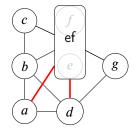
 $(G = G_n, G_{n-1}, \dots, G_1)$  where  $G_{i-1}$  is obtained by identifying two vertices of  $G_i$ .

イロト イポト イヨト イヨト 二日


CoA 2022, Paris

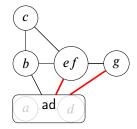
2/17

 $V(G_i) \leftrightarrow \text{partition of } V(G).$ 


For every  $X, Y \in V(G_i)$  put:

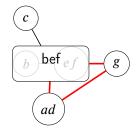
- An edge  $XY \in E(G_i)$  if G[X, Y] is a biclique;
- A nonedge in  $G_i$  if G[X, Y] has no edge;
- A red edge  $XY \in R(G_i)$  otherwise.



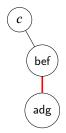

A contraction sequence of G: Sequence of trigraphs  $G = G_n, G_{n-1}, \dots, G_2, G_1$  such that  $G_i$  is obtained by performing one contraction in  $G_{i+1}$ .

CoA 2022, Paris




A contraction sequence of G: Sequence of trigraphs  $G = G_n, G_{n-1}, \dots, G_2, G_1$  such that  $G_i$  is obtained by performing one contraction in  $G_{i+1}$ .

CoA 2022, Paris




A contraction sequence of G: Sequence of trigraphs  $G = G_n, G_{n-1}, \dots, G_2, G_1$  such that  $G_i$  is obtained by performing one contraction in  $G_{i+1}$ .

CoA 2022, Paris



A contraction sequence of G: Sequence of trigraphs  $G = G_n, G_{n-1}, \dots, G_2, G_1$  such that  $G_i$  is obtained by performing one contraction in  $G_{i+1}$ .



A contraction sequence of G: Sequence of trigraphs  $G = G_n, G_{n-1}, \dots, G_2, G_1$  such that  $G_i$  is obtained by performing one contraction in  $G_{i+1}$ .



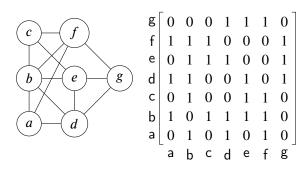
A contraction sequence of G: Sequence of trigraphs  $G = G_n, G_{n-1}, \dots, G_2, G_1$  such that  $G_i$  is obtained by performing one contraction in  $G_{i+1}$ .

CoA 2022, Paris



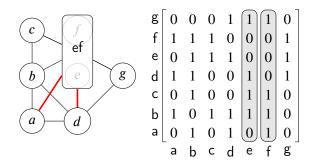
A contraction sequence of G: Sequence of trigraphs  $G = G_n, G_{n-1}, \dots, G_2, G_1$  such that  $G_i$  is obtained by performing one contraction in  $G_{i+1}$ .

CoA 2022, Paris 3 / 17


#### Definition (Contraction sequence, twin-width)

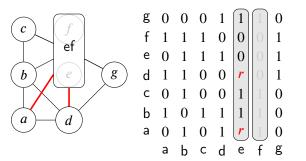
Contraction sequence of G = (V, E): sequence of trigraphs  $(G = G_n, G_{n-1}, \dots, G_1)$  where  $G_{i-1}$  is obtained by identifying two vertices of  $G_i$ .  $V(G_i) \leftrightarrow$  partition of V(G).

For every  $X, Y \in V(G_i)$  put:


- An edge if *G*[*X*, *Y*] is a biclique;
- A nonedge if G[X, Y] has no edge;
- A red edge otherwise.

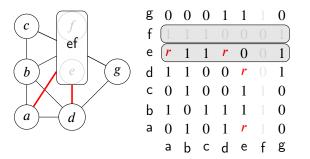
 $(G_i)_i$  has width at most d if every  $G_i$  has red degree at most d. The *twin-width* of G is the minimum width a contraction sequence of G could have.




A graph together with one of its adjacency matrix.

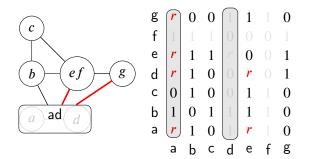
A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A




3

< ロト < 同ト < ヨト < ヨト




3

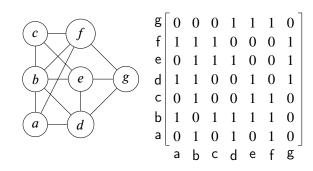
・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト



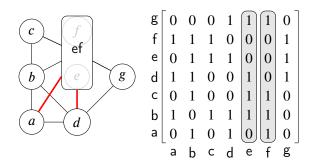
3

(a)



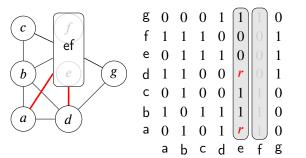

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト


Twin-width naturally extends for matrices on finite alphabets. Width of a sequence  $\leftrightarrow$  maximum number of red entries on a row/column

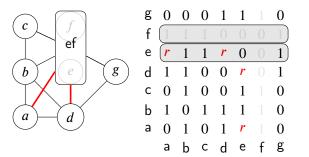
Graphs are given together with a total order on their vertices. Rows and columns indices of ordered matrices are totally ordered.

(A) → (A



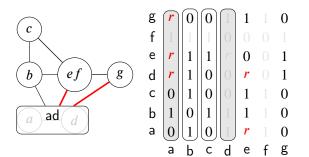

Left: Total order on V(G): a < b < c < d < e < f < g. Right: the associated ordered adjacency matrix.




3

< ロト < 同ト < ヨト < ヨト




3

< ロト < 同ト < ヨト < ヨト



3

イロト イポト イヨト イヨト



3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Remark

A graph G has twin-width at most d if and only if there is a total ordering < of V(G) such that (G, <) has twin-width at most d.

イロト イ団ト イヨト イヨト 二日

CoA 2022, Paris

#### $\varphi \in FO(E^{(2)})$ : first order formula describing a graph problem.



Example

#### $\varphi \in FO(E^{(2)})$ : first order formula describing a graph problem.

# $\varphi = \exists x_1, \exists x_2, \dots, \exists x_k, \forall x, \left(\bigvee_{i=1}^k x = x_i\right) \lor \left(\bigvee_{i=1}^k E(x, x_i)\right)$

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー わえの CoA 2022, Paris

7/17

corresponds to k-Dominating Set problem.

#### $\varphi \in \mathrm{FO}(E^{(2)})$ : first order formula describing a graph problem.

#### Definition

A class of graphs C is FO-FPT if there is an algorithm deciding for every  $G \in C$  whether  $G \vDash \varphi$  in time  $\mathcal{O}(f(|\varphi|) \cdot n^{\mathcal{O}(1)})$  for some computable f.

 $\varphi \in FO(E^{(2)})$ : first order formula describing a graph problem.

#### Definition

A class of graphs C is FO-FPT if there is an algorithm deciding for every  $G \in C$  whether  $G \models \varphi$  in time  $\mathcal{O}(f(|\varphi|) \cdot n^{\mathcal{O}(1)})$  for some computable f.

イロト 不得下 イヨト イヨト 二日

CoA 2022, Paris

7/17

#### Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

There exists an algorithm that, given a graph G, a witness that  $tww(G) \le d$  and a formula  $\varphi$ , decides whether  $G \vDash \varphi$  in time  $\mathcal{O}(f(d, |\varphi|) \cdot n)$ .

Can we approximate twin-width?

CoA 2022, Paris 8 / 17

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Can we approximate twin-width? i.e. Is there an algorithm taking d, G in input and returning either a "No" answer if G has twin-width more than d, or an f(d)-sequence otherwise?

Can we approximate twin-width? i.e. Is there an algorithm taking d, G in input and returning either a "No" answer if G has twin-width more than d, or an f(d)-sequence otherwise?

 $\rightarrow$  Would imply that the class of graphs with bounded twin-width is FO-FPT.

Can we approximate twin-width? i.e. Is there an algorithm taking d, G in input and returning either a "No" answer if G has twin-width more than d, or an f(d)-sequence otherwise?

 $\rightarrow$  Would imply that the class of graphs with bounded twin-width is FO-FPT.

 $\rightarrow$  True for classes of ordered graphs/matrices!

# Algorithmic aspect of twin-width for ordered structures

#### Theorem

There is an algorithm that, given an ordered  $n \times n$  matrix M and an integer d, returns in time  $\mathcal{O}(2^{2^{\mathcal{O}(d^2 \log(d))}} n^3)$ :

- "No" if tww(G) > d;
- a  $2^{\mathcal{O}(d^4)}$ -sequence otherwise.

# Algorithmic aspect of twin-width for ordered structures

#### Theorem

There is an algorithm that, given an ordered  $n \times n$  matrix M and an integer d, returns in time  $\mathcal{O}(2^{2^{\mathcal{O}(d^2 \log(d))}} n^3)$ :

- "No" if tww(G) > d;
- a  $2^{\mathcal{O}(d^4)}$ -sequence otherwise.

#### Theorem

Every hereditary class C of ordered graphs is FO-FPT if and only if it has bounded twin-width (unless FPT = AW[\*]).

イロト 不得下 イヨト イヨト 二日

A hereditary class of graphs (resp. ordered graphs) is *small* if it contains at most  $n!c^n$  (resp.  $c^n$ ) labeled graphs (resp. graphs) on n vertices.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CoA 2022, Paris

A hereditary class of graphs (resp. ordered graphs) is *small* if it contains at most  $n!c^n$  (resp.  $c^n$ ) labeled graphs (resp. graphs) on n vertices.

CoA 2022, Paris

10/17

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

Every class of graphs of bounded twin-width is small.

A hereditary class of graphs (resp. ordered graphs) is *small* if it contains at most  $n!c^n$  (resp.  $c^n$ ) labeled graphs (resp. graphs) on n vertices.

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

Every class of graphs of bounded twin-width is small.

Conjecture (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

A hereditary class of graphs has bounded twin-width if and only if it is small.

イロト 不得 トイヨト イヨト 二日

CoA 2022, Paris

A hereditary class of graphs (resp. ordered graphs) is *small* if it contains at most  $n!c^n$  (resp.  $c^n$ ) labeled graphs (resp. graphs) on *n* vertices.

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

Every class of graphs of bounded twin-width is small.

Conjecture (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

A hereditary class of graphs has bounded twin-width if and only if it is small.

> CoA 2022, Paris

10/17

Disproved recently [Bonnet, Geniet, Tessera, Thomassé '22]

A hereditary class of graphs (resp. ordered graphs) is *small* if it contains at most  $n!c^n$  (resp.  $c^n$ ) labeled graphs (resp. graphs) on *n* vertices.

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

Every class of graphs of bounded twin-width is small.

Conjecture (Bonnet, Geniet, Kim, Thomassé, Watrigant '21)

A hereditary class of graphs has bounded twin-width if and only if it is small.

> CoA 2022, Paris

10/17

Disproved recently [Bonnet, Geniet, Tessera, Thomassé '22] However true for classes of ordered matrices/graphs!

# Twin-width and counting

### Theorem (Matrix)

 $\mathcal{M}$ :class of ordered matrices closed under taking submatrices. Then exactly one of the following holds:

- $\mathcal{M}$  has bounded twin-width and contains at most  $2^{\mathcal{O}(n)} n \times n$  matrices.
- $\mathcal{M}$  has unbounded twin-width and contains at least  $\sum_{k=0}^{n} {n \choose k}^{2} k! \ge n!$  $n \times n$  matrices.

< □ > < 同 > < 回 > < 回 > < 回 >

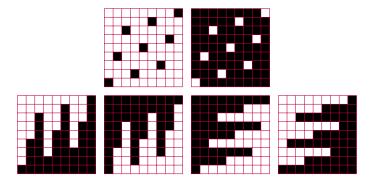
CoA 2022, Paris

#### Theorem (Matrix)

 $\mathcal{M}$ :class of ordered matrices closed under taking submatrices. Then exactly one of the following holds:

- $\mathcal{M}$  has bounded twin-width and contains at most  $2^{\mathcal{O}(n)} n \times n$  matrices.
- $\mathcal{M}$  has unbounded twin-width and contains at least  $\sum_{k=0}^{n} {n \choose k}^{2} k! \ge n!$  $n \times n$  matrices.

### Theorem (Graph, conjectured in [Ballogh, Bollobás, Morris,'06 ])

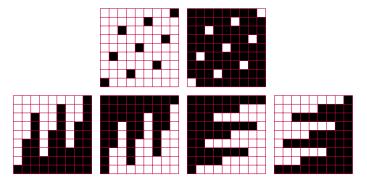

C:class of ordered graphs. Then exactly one of the following holds:

- C has bouded twin-width and contains at most  $2^{\mathcal{O}(n)}$  graphs of order n.
- C has unbounded twin-width and contains at least  $\sum_{k=0}^{\left\lceil \frac{n}{2} \right\rceil} {n \choose 2k} k! \ge \left\lceil \frac{n}{2} \right\rceil!$  graphs of order n.

イロト 不得下 イヨト イヨト 二日

## Permutation matrices

6 different ways of encoding a single permutation.

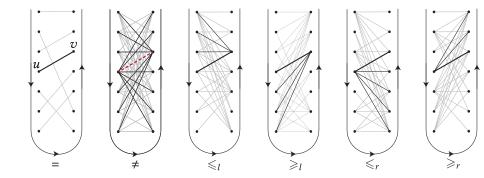



< 4 ₽ > <

3

## Permutation matrices

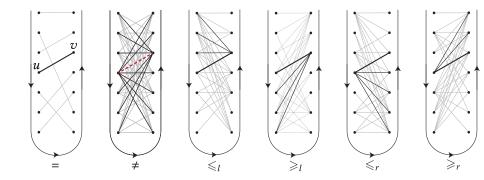
6 different ways of encoding a single permutation.




#### Theorem

A class of ordered matrices  $\mathcal{M}$  has bounded twin-width if and only if it contains one of the six encodings of all the permutations.

CoA 2022, Paris


# Ordered matchings



2

・ロト ・ 四ト ・ ヨト ・ ヨト

## Ordered matchings



#### Theorem

A class of ordered graphs C has bounded twin-width if and only if it contains one of the 24 encodings of all the ordered matchings or all the "ordered permutation graphs".

## Interpretation: "Apply a first order formula $\varphi$ on a graph G."



## **Interpretation:** "Apply a first order formula $\varphi$ on a graph G."

# Example $\varphi(x,y) = \neg E(x,y)$ Complement graph.



イロト 不得下 イヨト イヨト 二日

## Interpretations and transductions

#### **Interpretation:** "Apply a first order formula $\varphi$ on a graph G."

#### Example

$$\varphi(x, y) = \neg E(x, y)$$

Complement graph.

#### Example

$$\varphi(x, y) = \exists z, E(x, z) \land E(z, y)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

14/17

Square graph.

・ 同 ト ・ ヨ ト ・ ヨ ト

14/17

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

Transductions preserve the property of twin-width boundedness.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

Transductions preserve the property of twin-width boundedness.

#### Definition

A graph class C is *dependant* (resp. monadically dependant) if the hereditary closure of every interpretation (resp. transduction) is not the class of all graphs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

Transductions preserve the property of twin-width boundedness.

#### Definition

A graph class C is *dependant* (resp. monadically dependant) if the hereditary closure of every interpretation (resp. transduction) is not the class of all graphs.

イロト 不得下 イヨト イヨト 二日

CoA 2022, Paris

14/17

 $\rightarrow$  Classes with bounded twin-width are monadically dependant.

## Interpretations and transductions: the ordered case

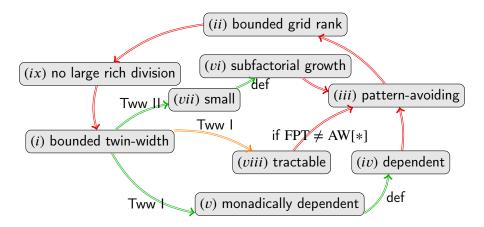
#### Theorem

C: class of ordered graphs. Then exactly one of the following holds:

✓ ⓓ ▷ < ≧ ▷ < ≧ ▷</p>
CoA 2022. Paris

- C has bounded twin-width and is monadically dependant.
- C has unbounded twin-width and is not dependant.

## Main result


### Theorem (Graph version)

Let  $\mathscr{C}$  be a hereditary class of ordered graphs. The following are equivalent.

- C has bounded twin-width.
- 2 C is monadically dependent.
- S is dependent.
- C contains  $2^{O(n)}$  ordered *n*-vertex graphs.
- So contains less than  $\sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} k!$  ordered *n*-vertex graphs, for some *n*.
- C includes neither one of 25 hereditary ordered graph classes  $\mathcal{M}_{s,\lambda,\rho}$  nor all the ordered permutation graphs.
- FO-model checking is fixed-parameter tractable on C.

イロト 不得下 イヨト イヨト 二日

## Proof overview



CoA 2022, Paris 17 / 17

・ 何 ト ・ ヨ ト ・ ヨ ト