
Twin-width V: Linear Minors, Modular Counting, and
Matrix Multiplication

Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Stéphan
Thomassé

Université Grenoble Alpes, Laboratoire G-SCOP

STACS 2023, Hamburg

STACS 2023, Hamburg 1 / 15



Twin-width of unordered graphs

Definition (Contraction sequence)

Contraction sequence of G = (V ,E): sequence of trigraphs
(G = Gn, Gn−1,… , G1) where Gi−1 is obtained by identifying two vertices of
Gi.

V (Gi) ↔ partition of V (G).
For every X, Y ∈ V (Gi) put:

An edge XY ∈ E(Gi) if G[X, Y ] is a biclique;
A nonedge in Gi if G[X, Y ] has no edge;
A red edge XY ∈ R(Gi) otherwise.
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Twin-width of unordered graphs
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A contraction sequence of G:
Sequence of trigraphs G = Gn, Gn−1,… , G2, G1 such that
Gi is obtained by performing one contraction in Gi+1.
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A contraction sequence of G:
Sequence of trigraphs G = Gn, Gn−1,… , G2, G1 such that
Gi is obtained by performing one contraction in Gi+1.
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Twin-width of unordered graphs
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A contraction sequence of G:
Sequence of trigraphs G = Gn, Gn−1,… , G2, G1 such that
Gi is obtained by performing one contraction in Gi+1.
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Twin-width of unordered graphs

Definition (Contraction sequence,twin-width)

Contraction sequence of G = (V ,E): sequence of trigraphs
(G = Gn, Gn−1,… , G1) where Gi−1 is obtained by identifying two vertices of
Gi.
V (Gi) ↔ partition of V (G).
For every X, Y ∈ V (Gi) put:

An edge if G[X, Y ] is a biclique;
A nonedge if G[X, Y ] has no edge;
A red edge otherwise.

(Gi)i has width at most d if every Gi has red degree at most d.
The twin-width of G is the minimum width a contraction sequence of G
could have.
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Examples and properties

Cographs ⇔ Graphs with twin-width 0;
Trees have twin-width at most 2;
[JP 22] Graphs of treewidth t have twin-width at most 3 ⋅ 2t−1;
[HJ 22] Planar graphs have twin-width at most 8;

Kt-minor free graphs have twin-width 222
(t)

;
Graphs with clique-width t have twin-width (t);
Permutation graphs G� such that � avoids a pattern � have
twin-width 2(|�|);
…
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Twin-width of ordered structures

Graphs are given together with a total order on their vertices.
Rows and columns indices of ordered matrices are totally ordered.
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Twin-width of ordered structures
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Left: Total order on V (G): a < b < c < d < e < f < g. Right: the
associated ordered adjacency matrix.
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Twin-width of ordered structures
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Twin-width of ordered structures
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Twin-width of ordered structures
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Twin-width of ordered structures

Remark
A graph G has twin-width at most d if and only if there is a total ordering
< of V (G) such that (G,<) has twin-width at most d.
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Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)

Can we approximate twin-width?

i.e. Is there an algorithm taking d,G as
input and returning in time f (d) ⋅ n(1) either a “No” answer if G has
twin-width more than d, or an f (d)-sequence otherwise?

Positive answer for every known “interesting family” of bounded twin-width.
→ True for classes of ordered graphs/matrices!

Theorem (BGOSTT ’22 and BGOT ’22)

There is an algorithm that, given an ordered graph (G,<) and an integer d,
returns in time (f (d)n2 log(n)):

“No” if tww(G) > d;
a g(d)-sequence otherwise.
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Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)
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input and returning in time f (d) ⋅ n(1) either a “No” answer if G has
twin-width more than d, or an f (d)-sequence otherwise?

Positive answer for every known “interesting family” of bounded twin-width.
→ True for classes of ordered graphs/matrices!

Theorem (BGOSTT ’22 and BGOT ’22)

There is an algorithm that, given an ordered graph (G,<) and an integer d,

returns in time 222
2
(d2 log(d))

n2 log(n):
“No” if tww(G) > d;

a 222
(d4)

-sequence otherwise.
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Linear Minors

Theorem (RS ’86)

A class of graphs has bounded treewidth if and only its minor closure
avoids the k × k grid for some k ∈ ℕ.
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Linear Minors

Theorem (RS ’86)

A class of graphs has bounded treewidth if and only its minor closure
avoids the k × k grid for some k ∈ ℕ.

Definition (Linear Minor)

A matrix A is a Linear Minor of a matrix B if it can be obtained from B
after the removal of some rows and replacing some pairs of consecutive
rows or columns by a linear combination of them.
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Linear Minors

Theorem (RS ’86)

A class of graphs has bounded treewidth if and only its minor closure
avoids the k × k grid for some k ∈ ℕ.
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Linear Minors

Theorem (RS ’86)

A class of graphs has bounded treewidth if and only its minor closure
avoids the k × k grid for some k ∈ ℕ.

Definition (Linear Minor)

A matrix A is a Linear Minor of a matrix B if it can be obtained from B
after the removal of some rows and replacing some pairs of consecutive
rows or columns by a linear combination of them.

Theorem (Ordered case)

A class of matrices has bounded twin-width if and only if its linear minor
closure avoids some matrix.
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FO model checking on graphs

' ∈ FO(E(2)): first order formula describing a graph problem.
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FO model checking on graphs

' ∈ FO(E(2)): first order formula describing a graph problem.

Example

' ∶= ∃x1,∃x2,… ,∃xk,∀x,

( k
⋁

i=1
x = xi

)

∨

( k
⋁

i=1
E(x, xi)

)

corresponds to k-Dominating Set problem.
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FO model checking on graphs

' ∈ FO(E(2)): first order formula describing a graph problem.

Theorem (Bonnet, Kim, Thomassé, Watrigant ’20)

There exists an algorithm that, given a graph G, a certificate that
tww(G) ≤ d and a formula ', decides whether G ⊨ ' in time
(f (d, |'|) ⋅ n).
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Modular Counting

' ∈ FO +MOD(E(2)): first order formula describing a graph problem
where we also allow existential quantifiers ∃i[p]x, �(x) expressing “there
exists i mod p witnesses x for �”.
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Modular Counting

' ∈ FO +MOD(E(2)): first order formula describing a graph problem
where we also allow existential quantifiers ∃i[p]x, �(x) expressing “there
exists i mod p witnesses x for �”.

Definition

G: graph. G[2]: modular square of G, with same vertices and:

E(G[2]) ∶= {uv ∶ |N(u) ∩N(v)| = 1 (mod 2)}.

STACS 2023, Hamburg 10 / 15



Modular Counting

' ∈ FO +MOD(E(2)): first order formula describing a graph problem
where we also allow existential quantifiers ∃i[p]x, �(x) expressing “there
exists i mod p witnesses x for �”.

Example

' ∶= ∃x1,∃x2,… ,∃xk,∀x,

( k
⋁

i=1
x = xi

)

∨

( k
⋁

i=1
EG[2](x, xi)

)

“There exists a dominating set of size k in G[2]”.
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Modular Counting

' ∈ FO +MOD(E(2)): first order formula describing a graph problem
where we also allow existential quantifiers ∃i[p]x, �(x) expressing “there
exists i mod p witnesses x for �”.

Example

' ∶= ∃x1,∃x2,… ,∃xk,∀x,

( k
⋁

i=1
x = xi

)

∨

( k
⋁

i=1
∃1[2]y, E(x, y) ∧ E(y, xi)

)

“There exists a dominating set of size k in G[2]”.
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Modular Counting

' ∈ FO +MOD(E(2)): first order formula describing a graph problem
where we also allow existential quantifiers ∃i[p]x, �(x) expressing “there
exists i mod p witnesses x for �”.

Theorem (BKTW 20, BGOT 22)

There exists an algorithm that, given a graph G, a certificate that
tww(G) ≤ d and a FO+MOD formula ', decides whether G ⊨ ' in time
(f (d, |'|) ⋅ n).
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Matrix Multiplication

“Consequence” of Modular Counting+ Approximation algorithm:

Theorem
A,B n × n matrices over F2 of twin-width d.

Then AB has twin-width f (d).
There is a d(n2 log(n))-time algorithm taking A,B as input and
returning AB.

Completely unpractical
Our contribution: an ad-hoc algorithm for matrix multiplication.
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Twin-decompositions
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Twin-decompositions

Remark
If tww(G) ≤ d then |( ,)| = (nd).

[BGKTW ’21] One can choose  with depth d(log(n)).
[PSZ ’22] gain in query time; lose in space.

STACS 2023, Hamburg 13 / 15



Twin-decompositions

Remark
If tww(G) ≤ d then |( ,)| = (nd).
[BGKTW ’21] One can choose  with depth d(log(n)).

[PSZ ’22] gain in query time; lose in space.

STACS 2023, Hamburg 13 / 15



Twin-decompositions

Remark
If tww(G) ≤ d then |( ,)| = (nd).
[BGKTW ’21] One can choose  with depth d(log(n)).
[PSZ ’22] gain in query time; lose in space.

STACS 2023, Hamburg 13 / 15



Matrix Multiplication

(

0 A
B 0

)

⋅
(

0 A
B 0

)

=
(

AB 0
0 BA

)

allows to reduce to the problem of squaring a matrix.

→ Extends to a
FPT-algorithm for matrix multiplication over F2 with same complexity.
→ Extends over Fq for q: prime power.
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Matrix Multiplication

Theorem

There exists a (d24dn)-time algorithm that, given a twin-decomposition
( ,) of width d of A, outputs a twin-decomposition of width (d22d) of
A2.

→ Extends to a FPT-algorithm for matrix multiplication over F2 with same
complexity.

→ Extends over Fq for q: prime power.
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Matrix Multiplication

Theorem

There exists a (d24dn)-time algorithm that, given a twin-decomposition
( ,) of width d of A, outputs a twin-decomposition of width (d22d) of
A2.

→ Extends to a FPT-algorithm for matrix multiplication over F2 with same
complexity.
→ Extends over Fq for q: prime power.
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First step: the shape of the tree
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Second step: computation of labelled edges and labelling
vertices
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Last step: from orange to green edges
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Last step: from orange to green edges
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Last step: from orange to green edges
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